论文部分内容阅读
本文对暗能量的巧合问题以及与暗能量相关的修改引力理论,f(T)引力,进行了研究。 首先是对三重巧合问题的研究。我们指出了目前比较流行的两种三重相互作用暗能量模型之间的等价性。根据稳态假设,我们求出了各能量分量之间的转化项的具体形式,并发现,符合稳态假设的能在数学层面解决三重巧合问题的解有三组,但只有一组解是符合实际观测的,这组解表明。在宇宙膨胀过程中,暗能量转化为物质,物质又转化成辐射,即:随着宇宙膨胀,密度减小慢的能量密度向着密度减小快的能量密度转化,以此来解决巧合问题。我们还对三重相互作用暗能量模型的稳定性进行了全面研究,分析了所有的不同形式的相互转化项及其组合,发现只有当物质和暗能量之间的转化项正比于临界密度,或者暗能量密度、且物质和辐射之间的转化项不是正比于辐射密度时,对应的模型在微扰下才是稳定的,这个结果对相关的模型构建给出了限制。 其次是在全息能量模型的基础上,对f(T)引力理论重新构建的研究。由于f(T)是修改引力理论,它所修改的是引力理论中的几何部分的内容,而全息能量模型中的能量又是通过时空流形的几何量来定义的,这种与时空几何的共同联系使我们可以将两者结合起来,以全息能量模型作为对f(T)引力理论的约束,从而确定f(T)引力理论的作用量形式,使得最终得到的f(T)理论自动包含一个加速膨胀的宇宙学解。不同的全息能量模型会导致不同的f(T)引力理论。在本文中,我们对目前影响比较大的三种全息暗能量模型,HDE、NADE和RDE,分别进行了相应的f(T)引力理论的重新构建;我们也在我们自己建立的全息ρKMR模型的基础上,进行了相应的f(T)引力理论的重新构建。在构建过程中,我们发现,目前普遍采用的边界条件可以在微分方程的通解中选出符合厄米性要求的解,在这个意义上来说,这些边界条件是有一定合理性的,但是,它们会导致一些重要信息的丢失,比如在RDE的物质占主导时期,采用这些边界调节得到的结果没有展现出预期应该有rescaling行为,这是由于边界条件过于粗糙造成的。我们提出了新的边界调节,并利用它们给出更加合理的结果。