面向分布式能源接入的多端口级联多电平变换器拓扑与功率平衡控制研究

来源 :武汉大学 | 被引量 : 0次 | 上传用户:flyindirty2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着我国综合国力及人口的不断增长,能源消费水平大大提高。传统能源在未来面临着资源枯竭的问题,同时化石燃料的燃烧会对环境造成不可逆的伤害,因此新能源的开发和利用已成为保持社会发展可持续的源动力。分布式能源并网或者是对负载供电需要电力电子变换器来实现,多端口变换器通过器件复用的方式有效地降低了多输入多输出系统器件数量以及成本,并提高各源荷间的能量传递效率。此外,级联多电平结构通过子模块的级联配合载波移相控制策略可实现电压和容量的提升,具有高度模块化、谐波特性好以及扩展性强等特点,可作为分布式电源接入的一个重要媒介。因此为了灵活高效地实现中高压大容量的新能源接入,本文基于多端口级联多电平拓扑研究合理的能量管理与功率控制手段以满足新能源的有效利用。首先采取模块复用的思想,在矩阵变换器九桥臂的基础上交替去除三条桥臂,剩余的六条桥臂形成六边形级联多电平变换器,将相间的三组桥臂前端与三相PWM整流器相连接并通过多绕组变压器接入电网,实现六边形两端口变换器向三端口的拓展。之后对六边形变换器进行了拓扑建模研究,建立了端口电压电流与桥臂之间的联系,并推导得到桥臂功率各个频次分量的表达式;通过建立桥臂瞬时功率直流分量的表达式并分析了六边形变换器桥臂瞬时功率不平衡机理,提出了环流控制的必要性原理;通过对桥臂子模块电压波动分量的计算推导出桥臂电压波动分量,计算得到环流波动分量;最后对整个计算过程进行n次迭代,得到环流波动表达式的通式,至此完成对三端口六边形级联多电平变换器建模与环流分析的工作。寻求合理有效的分布式能源消纳技术具有重要的研究意义。本文将六边形变换器分为两种接法下的四种工作模式,研究基于三次谐波注入以及电网电动势前馈的整流侧电压电流双闭环控制策略、逆变侧端口电流的控制、系统功率平衡的控制、桥臂内功率的平衡控制以及载波水平移相SPWM调制策略,并给出了六边形变换器电感电容参数设计方法,在此基础上对带多绕组变压器前端以及分布式前端接入两种接法下的分布式盈余与不足两种工况进行MATLAB/Simulink仿真来证明拓扑与控制的可行性。为了实现海上风电的低频接入电网,本文采用六边形变换器作为分布式低频接入电网的媒介,在上一场景的基础上改变部分控制方法,采用对桥臂电流进行控制从而控制桥臂电压的思想,并对环流进行直接的控制,通过桥臂间以及桥臂内的能量平衡控制来维持电容电压的稳定,从而使得整个系统的功率达到平衡,最后仿真通过系统内部控制效果波形以及系统外部各端口的电气量波形来验证控制的有效性。
其他文献
面对环境资源供给侧改革的双重压力,电力行业亟待向环保低碳、可靠性更高、控制更加智能的运行方式转型。配电网中新能源投入比例的持续升高,设备类型的增多以及主动管理措施的多样化,使得配电网规划面对更多不确定性的挑战。因此,针对主动配电网规划,如何充分考虑新能源带来的不确定性,制定更为有效的扩展方案,具有较大的实际意义。本文以此为出发点,提出了基于不确定网络理论的主动配电网扩展规划模型,为解决新能源的不确
在特定的观测环境下,多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达波形的选择与参数设计直接决定了雷达的探测性能、系统分辨率、探测精度以及潜在的抗干扰性能等。基于此,本课题从实际项目关于雷达目标特性和探测指标要求出发,将MIMO体制的优势与高频地波雷达(High Frequency Ground Wave Radar,HFGWR)工作的实际情况结合,从理论
大数据是近几年非常热门的一个研究议题,其应用场景已经扩展到许多其他学科当中,而GIS行业关注的重点则主要是时空大数据。挖掘利用时空大数据需要解决的一个核心问题就是如何提供支持大数据空间计算的能力,众所周知,比较流行的大数据框架,如Hadoop、Spark、Storm等均不支持空间数据的计算处理,而在Hadoop和Spark基础上开发的一些支持空间计算的框架如GeoSpark、Geo Mesa、Sp
立体视觉通过拍摄不同视角下同一个三维场景的两幅或者多幅二维图像,利用立体匹配技术寻找各图像之间每个像素点的匹配点并计算对应的视差值,根据三角测量原理和对应的视差信息恢复该三维场景的深度信息,是摄影测量学与计算机视觉领域的重要研究方向之一。双目立体匹配是立体视觉的重点也是难点,立体匹配的精度会直接影响到三维重建的结果。根据视差计算的优化方式,立体匹配算法可分为全局算法、半全局算法和局部算法。全局算法
如今,人类对遥感信息技术的认识不断加深,遥感技术已成为人类获取空间信息的重要途径之一。遥感影像获取方式的多样化为对地观测提供了丰富的手段。然而,海量、多源遥感影像为空间信息搜集带来便利的同时,也带来了信息数据全自动、实时性、高精度处理的挑战。在海量多源数据中,高分辨率卫星影像和无人机倾斜影像是有效获取地物目标信息的重要数据源,对二者的充分高效利用已成为遥感对地观测的关键技术之一,这两种数据源的影像
随着全球卫星导航系统(Global Navigation Satellite System,GNSS)的不断发展,高精度、高可靠性、高兼容性和实时性也渐渐成为人们关注的焦点,实时精密单点定位(Precise Point Positioning,PPP)以模型简单,实时性强,定位方式灵活等特点,已逐渐被广泛采用,但是在进行实时精密定位时,依赖于实时高精度轨道钟差产品的支持。现阶段,IGS已提供预报轨
传统汽车行业能够给人们提供便利生活的同时也带来了过度使用化石能源所造成的环境污染问题。随着人口数量和汽车保有量的不断增加,传统的化石燃料逐渐减少,如何利用可再生能源、发展新能源汽车已迫在眉睫,电动汽车和充电站因此得以快速发展。充电站能够高效地给多台电动汽车提供电能的同时也必然会存在着其他的问题,特别是充电功率较高的快充充电方式,会对整个充电系统带来较大的扰动,进而产生大信号稳定问题,甚至使整个充电
由于近年来大停电事故的频发,电力网络的脆弱性问题备受关注,目前对于脆弱性的研究主要集中于输电网络,对配电网脆弱性的研究还位于起步阶段。分布式电源的接入,增加了配电网络的复杂程度,配电网的脆弱性分析评估得到了重视。目前常用的复杂网络理论和风险理论仅能从结构或运行方面片面的反映电网脆弱性,考虑不够周全。本文结合复杂网络理论和风险理论,提出节点和线路脆弱性指标,并采用层次分析法给予各指标权重求和,求得节
近年来,由于极端自然灾害引起的电力系统事故频繁发生,对电网造成了严重破坏,导致国民经济的巨大损失,也给居民生活带来了极大的不便。因此,有必通过构建核心骨干网架并提高关键线路设防标准,以提升电网抵御灾害的能力,减小自然灾害对电力系统及社会造成的损失。本文根据电网差异性规划面临的新要求,对电网脆弱性元件评估、差异化经济性评估、核心骨干网架构建、关键线路差异化加强四个方面进行深入研究,提出了一种考虑区域
为了改善能源消费结构,降低环境污染,实现汽车产业的跨越式发展,近几年国家在电动汽车发展方面给予了大量的政策和资源扶持。但充电技术在一定程度上限制了电动汽车的普及,无线充电技术的发展为解决该问题提供了新的思路。相较于传统的电动汽车有线充电方式,无线充电具有安全、方便、可靠、智能化等优势。在当前对无线电能传输的研究中,谐振式无线电能传输技术(MCR-WPT)因其在传输功率、效率和距离等方面的优越性成为