论文部分内容阅读
随着工业化生产规模的迅猛扩大,以及化石燃料的大量燃烧,导致大气中二氧化碳的含量不断增加,这使得全球由温室效应引起的气候变暖现象也在不断加剧。因此,开发一种新型的二氧化碳分离和捕捉技术,对于缓解气候变暖是非常必要且迫切的。本论文分别采用P123为软模板剂,1,2-二(三甲氧基硅基)乙烷(BTME);为硅源合成了介孔氧化硅纳米管(E-SNTs)材料,E-SNTs经过聚乙烯亚胺(PEI)修饰后制得吸附剂后用于CO2捕捉;表面活性剂F127作为软模板剂,正硅酸四乙酯(TEOS)为硅源合成了有序介孔纳米氧化硅OMS,通过负载有机胺TEPA制得OMS基吸附剂;以KIT-6为硬模板,乙二胺(EDA)为氮源、四氯化碳(CCl4)为碳源合成了炭基碳材料KIT-6-CN,并将三种材料用于CO2的捕获。采用透射电镜、N2吸脱附、热重等仪器对其形貌及二氧化碳吸附性能进行了表征。1、氧化硅纳米管基吸附剂的制备及其CO2吸附性能的研究制备一系列负载不同有机胺量的氧化硅纳米管基吸附剂,并用于CO2的捕捉。结果表明,E-SNTs吸附剂的吸附性能随着有机胺负载量的增加呈现了先增加后减小的趋势,其中E-SNTs-50%(w)最大为3.32 mmol/g。这是因为该材料在负载有机胺的过程中,材料本身的孔径会减小,导致气体穿过时传质阻力变大。在通入C02气体时带入水汽,发现水汽不但没有减弱吸附剂的吸附能力,反而起到了促进的作用,吸附量达到3.75 mmol/g。经过多次吸脱附循环实验证明了E-SNTs在负载有机胺后仍保持了较好的稳定性和可再生性能。2、四乙烯五胺修饰不同孔径OMS基吸附材料的制备及表征采用水热法制备了不同孔径的OMS材料,对其进行有机胺改性,并用于C02的捕捉。结果表明,OMS-7.6相比OMS-5.6因其具有较大的孔径而在负载相同有机胺量时表现出更强的吸附性能。根据质谱仪测试得到的穿透曲线可知,介孔孔径越大,气体在穿过吸附剂时传质阻力越小,则吸附剂的吸附能力越好。3、三维孔道KIT-6合成氮化碳材料的制备及表征以KIT-6材料为硬模板,制备氮掺杂的介孔碳材料KIT-6-CN用于CO2吸附性能研究测试。CO2吸脱附实验结果显示,KIT-6-CN比碳材料KIT-6-C有更好的CO2吸附性能,且在0℃时其吸附量(3.09 mmol/g)要大于25℃(2.11 mmol/g)时,这说明低温有利于CO2的吸附。CO2循环实验说明该材料具有良好的稳定性。XPS结果证实,氮元素能促进碳材料对CO2吸附性能。