连动式债券的定价研究

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:yx10110605
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
连动式债券是近年来新引进的一种金融创新工具,它为股市和债市之间的风险对冲提供了很好的平台。另一方面,对于收益与风险的衡量,定量分析,特别是随机分析理论在金融产品尤其是衍生产品中的定价已经得到了广泛运用。本文使用随机积分理论和鞅方法对于两种不同的连动式债券从不同的角度给出了定价公式,他们分别是到期日为无限、存在违约风险的连动式债券和到期日为有限、没有违约风险的连动式债券。对于前一种债券,运用了巴黎期权的定价方法,并很好结合了布朗运动的积分理论。而对于后一种债券,则多次采用了等价测度变换的技巧使得原本不易讨论的问题得到了很好解决。全文通过随机分析理论在金融衍生物,特别是利率衍生物中的应用,大量运用金融工程中的实际概念对连动式债券模型参数进行解释,数学建模方面也紧密贴和实际。因此,两种模型都较好地模拟了连动式债券的实际运行情况,在国内对于连动式债券的研究还停留在概念水平上的时候,对其进行定量分析,不但具有一定的参考价值,也具有开创性的意义。
其他文献
作为精算学中一个重要的研究方向,风险理论已经日趋完善。然而由于风险的不确定性,累积分布的处理一直是一个难点。组合数学在概率理论中越来越广泛的应用能够为解决这个难题提
本文主要工作就是研究加2-柄对一类流形的Heegaard曲面的影响,主要讨论了加2-柄于双环面边界分支的情况.对于加2-柄于环面边界分支的情况(或者Dehn填充),一些作者已经进行过
本文根据b-弱紧算子及b-AM-紧算子的提出方法,考虑Banach格上一类新算子,即所谓的b-L-弱紧算子,将b-序有界集映为L-弱紧集。对于b-L-弱紧算子的研究,主要考察了该算子的基本性质
本文研究了一系列广义集值变分包含、一类强增生算子方程解以及一类非扩张映射的强收敛定理. 在Hilbert空间中研究(H,η)-单调算子的概念,以及与此相关的预解式算子RH,ηM,
Lévy过程是随机过程理论研究的重心。近20年来,在经典的B-S期权定价模型中,对于股票价格的连续变化服从几何布朗运动的假设,已经被实证研究证明与实际数据有显著的不一致,如尖峰
这篇文章分为两部分,分别介绍了有关图的列表着色和双圈覆盖猜想的一些研究结果。 第一部分由第一章到第四章组成。第一章给出了图的有关定义及概念并介绍了图的列表着色的
C-移动是K.Habiro在定向链环上引入的一个局部移动的概念,而后K.Taniyama和A.Yasuhara把它推广到了空间图上.-移动的一些性质对研究空间图的分类问题具有重要意义.本文首先研
本文介绍了多传感器信息融合技术的基本原理,以及形成过程和发展历史。详细讨论了分布式多传感器航迹关联算法。研究了小波变换在信号去噪方面的应用,并结合传统的统计航迹关联
近年来,关于延迟微分方程的数值解的存在性、唯一性、稳定性已经有了广泛的研究,但是对于线性多步法应用于EPCA方程尚没有任何结果。本文从最简单的线性多步法二阶显式Adams方
令{Xn,n≥1}为一列独立同分布随机变量序列,当n≥1,定义部分和Sn=n∑i=1Xi.对它的研究在上个世纪已日臻完善,包括中心极限定理、强大数定理、重对数律等.本文在{Xn}独立同分布结