Hopf代数上的双边交叉积及Hopf π-代数交叉余积

来源 :河南师范大学 | 被引量 : 0次 | 上传用户:dmj_66666
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要讨论以下问题:一是给出Hopf代数双边交叉积的构造方法,另一方面是把这一方法推广到Hopfπ-代数上,构造出Hopfπ-代数上的交叉余积.   首先本文简要介绍了交叉双积及群上交叉余积的研究背景以及本文问题的来源和意义,并阐明了本文的基本思想.   其次,由Brzezi(n)ski交叉余积和Hopf交叉余积出发,给出了单边交叉余积C×αH×D的余乘法,接着给出了单边交叉余积C×αH×D和双边Smash积代数C#H#D作成双代数的充分条件,并称这一双代数为双边交叉积,记作C(□)αH(□)D.著名的Radford双积和双边积是其特例.作为双边交叉积的一般情形,并给出了Brzezi(n)ski交叉余积和Smash积作成双代数的充要条件,记作C(⊙)H.   最后,将上述结果推广到Hopfπ-代数上,证明了Hopfπ-代数的交叉余积和π-Smash积构成Hopfπ-代数的充要条件.
其他文献
问:我平常很喜欢吃金针菇,特别是用来涮火锅,但我丈夫总是将金针菇在火锅里泡泡就吃,我感觉此时的金针菇还没完全煮熟。请问吃生的金针菇,会不会引起食物中毒呀?  答:金针菇必须煮熟了再吃,否则容易引起中毒。因为新鲜的金针菇中含有秋水仙碱,人食用后,容易因氧化而产生有毒的二秋水仙碱,它对胃肠黏膜和呼吸道黏膜有强烈的刺激作用。一般在食用30分钟至4小时内,会出现咽干、恶心、呕吐、腹痛、腹泻等症状;大量食用
时滞系统是具有信号传输延迟的系统,这种延迟即为时滞。它常见于实际系统中,在很多情况下,它可以降低系统的性能指标,甚至会使系统变得不稳定。近年来,对时滞系统的稳定性研究成为
本文主要考虑了如下非线性梁方程的整体适定性和吸引子:(?)其中Ω是RN中具有光滑边界(?)Ω的有界域,f(x)是外力项,φ′,g(u)是非线性项(增长指数分别为,).本文考虑次临界情况,即(?),其能量空间是(?).就该问题本文证明了弱解的整体适定性;当t>0时弱解具有更高正则性;建立了解算子半群在X中整体吸引子和指数吸引子的存在性;整体吸引子和指数吸引子在更高正则性空间中的紧性,吸引性和分
学位
在许多生活实际问题中所建立的微分方程多是非线性的,而大部分情况下,在数学研究中为了研究其某种特定的性质,例如,解的周期性和稳定性等,只有对非线性方程进行线性化后才能
非线性抛物方程解的爆破性质是偏微分方程理论的重要研究内容之一.在第二章中,我们研究了一类含有梯度吸收项的拟反应扩散方程的整体解和爆破解,通过构造适当的辅助函数和使
护栏是道路交通安全中必不可少的一部分,如果可以在计算机上实现护栏防撞性能的检测、调整,那么对现实中护栏的适当安装具有重要的指导作用,并且可以大量地减少人力物力的浪
利用有限群的共轭类的一些数量性质来研究限群的结构是有限群理论的重要课题,国内外众多学者在这一领域已经获得了若干研究成果.本文首先通过定义一些和有限群的共轭类相关联