【摘 要】
:
伴随着Wi-Fi网络的大规模建设和移动终端内嵌Wi-Fi接收机的普及,基于Wi-Fi信号的室内定位成为学术界和工业界广泛关注的热点。随着机器学习的发展,基于Wi-Fi的室内定位可以通过机器学习技术来解决。作为一种新的机器学习技术,极限学习机(ELM)具有学习速度快,计算复杂度低,泛化性能好等优点。但是当ELM理论直接用于室内定位,离线学习会存在过拟合的风险,定位结果稳定性弱。并且在数据异常情况下定
论文部分内容阅读
伴随着Wi-Fi网络的大规模建设和移动终端内嵌Wi-Fi接收机的普及,基于Wi-Fi信号的室内定位成为学术界和工业界广泛关注的热点。随着机器学习的发展,基于Wi-Fi的室内定位可以通过机器学习技术来解决。作为一种新的机器学习技术,极限学习机(ELM)具有学习速度快,计算复杂度低,泛化性能好等优点。但是当ELM理论直接用于室内定位,离线学习会存在过拟合的风险,定位结果稳定性弱。并且在数据异常情况下定位性能的鲁棒性差,对训练数据集比较敏感。针对基于ELM的定位算法的上述缺点,本课题开展了基于ELM理论的稳健定位算法研究。主要研究内容包括:(1)首先总结归纳基于测距的Wi-Fi定位算法。然后描述了基于接收信号强度指示(RSSI)的指纹定位技术的模型和工作原理,在此基础上描述了常用的基于K-最近邻(KNN)指纹匹配算法和基于支持向量机(SVM)指纹匹配算法。详细介绍了算法的在离线阶段和在线阶段的具体流程,为后续的研究工作打下理论基础。(2)提出了一种基于极限学习机和岭回归的定位方法。离线阶段,在定位区域不同位置上采集Wi-Fi信号强度值指示(RSSI),构建Wi-Fi信号强度指示-目标位置的指纹库,作为离线训练数据集。为了解决训练数据集中的噪声干扰问题,提出了改进的基于岭回归的ELM定位算法,以获得更稳定的预测结果和更好的泛化能力,其中岭参数通过训练误差的方差得到。在线阶段,直接将所获得的位置回归函数用于位置估计。由于减少了离线阶段的训练偏差,因此所提算法在在线阶段能够产生更稳定,准确的位置估计结果。(3)提出了一种基于极限学习机和决策级融合的定位算法。离线阶段,首先利用K-means聚类技术对Wi-Fi信号强度指示-目标位置指纹库进行基于基站特征提取的数据预处理。形成不同类基站信号强度构成的训练数据子集。然后对所有训练数据子集进行多次基于ELM的离线回归学习,通过比较每个训练子集的学习误差,得到多个位置回归函数。在线阶段,对接收RSSI测量值的基站特征提取后,利用对应的位置回归函数得到位置估计的多个中间值,最后通过决策级数据融合技术得到最终的位置估计。由于每个位置回归函数不同的权重,所提算法的位置估计结果更加准确。同时多次离线学习能够减轻样本数据异常的影响,提高离线学习的泛化能力。
其他文献
大数据时代下,数据呈多维化、海量化的特征,查询趋于个性化,用户对结果的准确度、查询效率要求更高。传统的多维数据查询方法存在不能高效地解决静态和空间属性相结合、动态的多用户查询以及分类域上的个性化查询等问题,因此研究在度量空间中的多用户查询以及分类域上的用户偏好获取对于找出高质量的结果集具有十分重要的意义。多维Skyline查询根据对象数据点的属性值特性主要分成两类:数值域和分类域。本文重点关注空间
目前,随着图像采集技术的发展,图像相关的应用越来越广泛。由于图像中包含的信息量很大,从图像中提取具有区分性的抽象特征是物体识别中的关键步骤。传统的图像特征是手工设计的特征,依赖于设计者的先验知识,其适用范围往往较窄。在人工智能时代,深度学习被广泛用于学习图像的特征表达,基于深度学习的方法能够从大量数据中学习特征表示方法,获得具有强大表现力和泛化能力的特征。本文基于以上研究背景,研究了基于深度哈希的
协同过滤推荐算法是最常用的推荐算法之一,其利用大量相关数据对用户行为相似性进行分析并为用户提供个性化推荐。在大数据时代,大量的数据呈现在人们面前,而个性化推荐的实现需要挖掘数据中的隐含信息。LDA主题模型通常用于获取文档的主题分布信息,因此,许多学者尝试将LDA主题模型应用于协同过滤推荐算法之中,并且不断地进行探索优化。传统的LDA主题模型是无监督主题模型,在实际的文本挖掘应用中,整个数据集经常需
从大型数据库中查找出用户最感兴趣的k个数据来支持用户多标准决策的制定是数据库领域一个重要的研究课题。k遗憾查询使用最大遗憾率的衡量标准,返回k个使得用户的最大遗憾率最小的数据。但是,目前已有的关于k遗憾查询的研究存在效率较低和结果集会偏向于最不满意的用户的问题。论文针对k遗憾查询存在的问题,研究了基于用户开心度的k代表点选取技术,结合目标函数函数的特性,给出了高效的解决方案。主要工作和创新点如下:
移动社交网络是一种将社交科学与无线通信相结合应用于移动网络的技术,其主要用于解决网络中由于节点移动性强所造成的消息投递率低、链路中断频繁和传输延迟高等问题,从而促进网络中移动设备之间的连接,并为用户进行消息的访问、共享和分发提供有效的移动计算环境。移动社交网络被认为是能够给移动用户提供数据传递的一种服务系统。在当前的移动社交网络中,用户多采用便携式移动设备进行消息传输,但由于节点间的连接间歇性和移
随着设立公司标准的降低、企业数量的急剧增多,越来越多的公司、企业融入经济社会生活,单位行贿犯罪层出不穷,且呈现出复杂性和广泛性的特点。虽然《中华人民共和国刑法修正
低功耗、频谱资源紧缺与高速率、高覆盖率一直以来都是无线通信系统亟待解决的问题。与传统的多天线系统相比,大规模多输入多输出(Multi-Input Multi-Output,MIMO)系统,有效地开发空间资源,提高时域和频域的资源利用率,给系统带来了极大的容量增益。全双工技术采用的是同时同频双向传输模式,实现双向通信,在通信过程中使用相同的信道资源。因此,如果能够有效地应用全双工通信,即收发机在相同
Polar码是一种基于信道极化理论的新型信道编码方法,且能够达到二进制离散无记忆信道的信道容量,同时其编译码复杂度较低。Polar码在各种应用方面的研究受到了广泛关注。多层式单元(Multi-Level Cell,MLC)型NAND闪存作为一种非易失性存储,凭借其存储容量大、功耗低及存储成本小,已成为存储市场中的主流。但由于其存储密度的增加导致了数据存储的可靠性降低,从而极大地缩短了闪存的使用寿命
智能终端设备和移动互联网的飞速发展,对无线通信技术提出更高的传输质量与系统容量的需求。由于毫米波的频谱资源更为丰富,毫米波通信成为无线通信领域的研究热点。大规模MIMO和波束成形技术能有效弥补毫米波的巨大路径损耗,成为了毫米波通信的关键技术。全数字波束成形由于成本高、能耗大等特点,难以应用于毫米波通信。混合波束成形结合了数字域和模拟域的波束成形,能有效减少射频链路数,降低系统的复杂度,成为毫米波通