论文部分内容阅读
本文采用水热合成法,合成出一系列金属(Ti、Sn)掺杂及强酸基团(如SO42-、ZrO2等)、强碱基团(如K2O)改性的MCM-41中孔分子筛催化剂,并将其首次应用于聚烯烃的催化裂解反应。采用X射线粉末衍射(XRD)、N2吸附-脱附、傅立叶变换红外光谱(FT-IR)、紫外可见光谱(UV-VIS)、氨吸附-脱附(NH3-TPD)技术对其进行了表征。结果表明:所合成的催化剂具有中孔分子筛的特征结构,较好的长程有序性和结晶度;强酸、强碱基团已存在于中孔分子筛上,从而产生酸、碱催化活性中心。本研究以高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、聚丙烯(PP)和聚苯乙烯(PS)的裂解反应为模型反应,以制取液体燃料和单体为目标,对各种改性中孔分子筛的催化裂解性能进行评价,结合催化剂表征的结果,研究各种改性中孔分子筛的结构及酸、碱强度与催化性能之间的关系。实验结果表明:对于HDPE和LDPE的催化裂解反应,催化剂的酸性强弱是影响催化活性的主要因素;对于PP,催化剂的孔结构是影响催化活性的主要因素;而对于PS裂解制取苯乙烯单体,催化剂的碱性强弱则是影响催化活性的主要因素。以催化效果较好的改性中孔分子筛作为催化剂,详细考察了n(Si):n(M)(M=Ti、Sn)、负载量、催化剂用量、反应温度以及反应时间等因素对模型反应结果的影响,获得了较佳的反应条件。对于LDPE的催化裂解反应,SO42-/Sn-MCM-41(n(Si):n(Sn)=50)具有较好的催化性能,在较佳的反应条件下:反应温度440℃、m(SO42-/Sn-MCM-41)/m(LDPE)=2%、反应时间50min,LDPE的转化率为83.0%,其中液体产物的收率为73.7%;对于HDPE的催化裂解反应,ZrO2/Ti-MCM-41(n(Si):n(Ti)=40)具有较好的催化性能,在较佳的反应条件下:反应温度440℃、m(ZrO2/Ti-MCM-41)/m(HDPE)=3%、反应时间50min,HDPE的转化率可达73.6%,其中液体产物的收率为63.7%;对于PP的催化裂解反应,ZrO2负载量为18%(质量分数)的18%ZrO2/Ti-MCM-41(n(Si):n(Ti)=40)表现出较好的催化活性,在较佳的反应条件下:反应温度400℃、m(18%ZrO2/Ti-MCM-41)/m(PP)=2%、反应时间30min,PP的转化率为91.2%,其中液体产物的收率为83.6%;对于PS的催化裂解反应,K2O负载量为9%(质量分数)的9%K2O/MCM-41催化活性较好,在较佳的反应条件下:反应温度400℃、m(9%K2O/MCM-41)/m(PS)=2%、反应时间30min,PS的转化率和液体产物的收率分别可达90.5%和85.7%,苯乙烯单体的收率可达69.0%。有关上述催化剂在聚烯烃裂解反应中的应用研究未见文献报道。