论文部分内容阅读
建立地理信息系统(GIS)的一个重要环节是地理数据的获取,工作量占整个系统开发的80%以上,也是影响GIS发展的瓶颈。地图要素智能识别是地理数据获取的核心问题,是图像处理、模式识别和人工智能等多种学科的综合应用,同时也是计算机视觉领域的重要课题。其直接面向企业需求,具有很高的理论意义和应用价值,多年来的理论研究及实践为此课题的深入研究奠定了良好的基础,但也存在着许多亟待解决的问题,识别理论和方法有待突破。地形图是点、线、面符号的有机集合,是矢量线划图;而扫描地形图图像是点阵像素的自然集合。为了将点阵像素聚合为地图要素符号,本文从知识出发,进行分层处理和自组织的推理,力求加强表达单元整体性、提高表达的层次性、关注各种关联信息以及根据启发信息选择和组织识别数据。本文扩充了图段的约束条件,使其满足颜色、宽度和拓扑一致性要求,使图段成为具有单意义的图像表达单元。根据象素之间的关联,先对点阵图像进行游程编码,构建带有属性信息的扫描串,然后基于扫描串宽度、颜色和拓扑一致性形成图段,得到图像的图段表达,同时提取图段之间连接关系,构建图段连通体。根据图段连通体的属性提取点、线、面连通体,并对线进行矢量化,得到线符号及其之间的连接关系,构建线符号之间的邻接关系。根据线符号之间的关联性,搜索属于同一地图要素的所有线符号,提取之间的关系,重建地图要素。根据人脑识别地形图时对目标信息的组织方式,本文提出了地形图目标的三级模型——地图要素模型、符号模型和影像模型,符号模型将现实模型和影像模型联系起来,该模型基于矢量栅格一体化数据表达形式,是面向地物的,具有矢量数据的特点;同时,通过地物的标识号可以找到该地物途径的所有像元,从而又具有栅格的全部特性。基于符号模型进行地物的识别和提取,可以充分利用地物所有像元的局部特征,同时又可利用地物的拓扑关系等整体特征。识别过程中提取的信息分成图段、符号和地图要素三个层次,同一层次数据之间相互关联,不同层次数据之间也相互关联,这样既注重横向的关联又重视纵向的关联。在识别中,先获得像素局部特征再生成图段连通体的整体结构,然后又用整体结构去指导和修正局部特征;高层信息从低层数据获得,反过来又去指导低层数据,采用自下而上与自上而下推理相结合的方式完成整个识别。为了充分利用地形图的颜色信息,在分析前人分色处理方法的基础上,面向像元层次提出了增加颜色分类数的思想,从而有效地解决了过渡色分色模糊的难题;面向扫描串层次将颜色组合情况归纳为16种,巧妙地用各颜色代码之和来表示,从而使得扫描串带有了颜色信息,为图段颜色信息的提取提供了基础。本文采用游程编码技术实现了像元矩阵→扫描串→图段的转换。图段是满足颜色、宽度和拓扑一致性的邻接扫描串,其能够直接表达线段和交点。利用图段的颜色信息和邻接关系构建单版图段连通体,从而实现了地形图图像的自动分色,由于同时考虑了颜色属性与空间关系,其在处理效率和抑制噪声等方面更为优越。在单版连通体图基础上,对图段连通体进行分析。从地图符号的形状、尺寸和拓扑关系入手,归纳总结出特征尺寸、高宽比、黑白比、节点密度等适于表达的特征,并基于特征的区别有效地将线符号从点、面符号中分离出来。对提取得到的线符号,依据节点图段采用分段矢量化的处理方法,然后根据节点图段的邻接关系进行同源直线检测,从而得到属于同一地图要素的所有矢量线段,形成完整的矢量信息。同时针对不同的地图要素自适应地调整检测条件,更好的提取虚线型道路、河流和等高线的矢量数据。基于上述识别方法和算法,设计开发了一个地形图智能识别原型系统。软件以VC++为平台,采用面向对象的设计方法,并利用通用数据库管理数据。