论文部分内容阅读
位标器是导弹导引头的关键部分,和导弹的打击精度紧密相关,使其保持高精度就显得非常重要。位标器的测试与标定精度是由位标器测试转台的精度决定的,提高测试转台的精度是提高位标器标定精度的最有效途径。因此,研究一种适用于某型号位标器的测试标定转台就具有重要的实际意义和价值。本文采用理论分析计算与样机实验相结合的方法,主要围绕基于超声波电机的二轴精密无磁转台关键技术、总体方案设计、直线驻波超声电机驱动性能的分析计算、二轴精密转台的指向精度分析计算、伺服控制系统的稳定性及控制精度以及最后的实验验证等方面开展了研究工作。首先,根据二轴精密无磁电动转台的设计指标要求,如负载大小、精度性能要求、无磁性能等要求,对驱动方式、导轨类型、位置检测系统进行了设计选型,提出了基于超声波电机的运动平台总体方案。根据二轴转台的负载大小和运动参数要求,进行了方位轴和俯仰轴超声波电机使用数量的计算。然后进行了二轴精密无磁转台的控制系统设计,给出了转台控制过程。其次,研究了转台电机的驱动性能和转台的启停特性。根据超声波电机的工作原理,建立摩擦耦合界面的数学模型,计算超声波电机驱动足的稳态输出力和转子最大角速度,分析了摩擦材料类型、预紧力大小、转子角速度等对超声波电机最大输出力的影响,最终得出选择氧化铝为摩擦材料、预紧力为45N时,超声波电机的输出力最大,单个驱动足最大输出力为3.2N。通过分析得出,转台的最大运转角速度和预紧力大小成反比,但是增大预紧力可以减小转台的启动时间。最后通过仿真分析验证了预紧力大小和超声波电机输出力、转子最大角速度的关系,并验证了超声波电机驱动形式具有很强的非线性。再次,围绕二轴转台的机械本体和控制系统两方面,分析了其指向精度和控制精度。通过对机械本体建立误差模型,分析各个误差源对指向误差的影响,找出指向误差最敏感的误差源,然后在加工装配过程中避免并进行误差补偿。然后分析了控制系统精度,通过PID参数整定实验分析,二轴精密转台能够实现0.001′的定位精度,并且具有很小的响应时间和很高的重复定位精度。最后,结合前面章节的分析,对样机进行了一系列实验验证。验证了二轴无磁转台的无磁性能,符合位标器的标定环境要求;验证了预紧力大小与超声波电机输出力和转子速度的关系,证实了超声波电机驱动具有很强的非线性问题;实验结果表明,基于超声波电机的运动平台具有很高的位置精度和重复定位精度。