超级电容器用石油沥青基三维多孔碳的制备

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:wxcld
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,日益增长的能源需求和可持续发展的环境要求人们致力于研发价格低廉、环境友好以及高容量的储能器件。在众多储能器件中,超级电容器作为一种传统的储能器件,以较快的充放电效率、高的功率密度以及较好的循环稳定性等特点吸引了广泛关注。如何寻找一种廉价易得的碳源,合成高性能的电极材料是需要攻克的难题。石油沥青作为石油炼制过程中的副产物,含有大量多环芳烃在热处理中易于芳香化,转化成易于电子和离子传输的碳片或碳笼。因此,研究由石油沥青制备储能材料的方法,实现其高附加值利用势在必行。主要研究内容与结论如下:(1)以石油沥青为碳源,二元熔盐体系(Na Cl/KCl)作为模板剂辅助原位KOH活化的方式,制备了三维互相交联的蜂窝状分级多孔碳(HPCs),探究了碳化温度对所制材料电化学性能的影响。用作对称型超级电容器电极材料时,HPCs在6 M KOH电解液中,0.05 A g-1时具有比容264 F g-1,在5 A g-1下循环10000次之后比容保持率高达91.1%,当电流密度增大至20 A g-1时比容保持率为83.7%,仍高达221 F g-1。(2)以石油沥青作为碳源,KCl作为溶剂和自组装的模板剂,原位KOH活化的方式,制备石油沥青基分级多孔碳材料(HPCs)。调控前驱物KCl的量调节重结晶的晶体形貌制备出不同形貌和电化学性能的多孔碳材料,并对碳材料的形貌形成机理进行了深入的研究。作为对称型电容器的电极材料,在0.05 A g-1的电流密度下比容为277 F g-1在20 A g-1的电流密度下比容保持为194 F g-1,其比容保持在70.1%,展现出了优异的容量和良好的倍率特性。在1 M Na2SO4电解液条件下展现出了高达1.8 V的电压窗口,在445 W kg-1的功率密度下展现出了14.2 Wh kg-1的能量密度。(3)通过石油沥青和柠檬酸钾两者混合热解的方式,提出了一种简单且温和的方式制备互相交联的多孔碳片(IPCs)。柠檬酸钾不仅作为活化剂而且作为模板剂。在6 M KOH对称型超级电容器中,在0.05 A g-1的电流密度下具有比容为307 F g-1,当电流密度高达20 A g-1时,比容保持为224 F g-1,其比容保持率高达73.0%,展现出良好的倍率特性。在5 A g-1的电流密度下进行恒流充放电循环10000次之后,其比容保持在93.4%,展现出了良好的循环稳定性。一个全新且容易的策略实现了石油沥青的高附加值利用,为工业化生产奠定基础。
其他文献
近年来汽车尾气的污染带来了诸多问题,解决尾气污染已迫在眉睫。聚甲氧基二甲醚是一种优良的柴油添加剂,将其添加到柴油中能够很好的改善柴油的燃烧状况,减少污染物的排放,提高发动机热效率。因此聚甲氧基二甲醚受到越来越广泛的关注。本论文以甲缩醛和多聚甲醛为反应原料,酸性树脂作为催化剂,打浆釜和悬浮床反应器相串联作为反应装置,旨在开发一种新型的合成聚甲氧基二甲醚的工艺,并对PODE合成规律和PODE产物分离方
随着人类社会的不断发展,传统的不可再生能源已经不能满足人类的需求,因此新能源的开发和利用势在必行。氢能作为一种新能源,具有环保,可再生等优势,被认为是最具发展潜力的清洁能源。电催化全解水是一种有效的制备氢气方法,因电催化过程绿色环保,且能够高效利用风能、太阳能产生的间歇性电能,因此成为当代科学研究的热点课题之一。但是,目前商用高效全解水的电催化剂多为贵金属材料,价格昂贵,资源匮乏,很难实现大规模的
随着“海绵型城市”概念的提出,透水沥青路面的建设速度加快。透水性沥青路面具有改善道路行车安全性、提高行车舒适性、减少交通噪声等优点,高黏改性沥青是透水性沥青路面重要组成材料,其品质的好坏直接影响到透水性沥青路面性能的优劣,因此高黏沥青正为透水沥青路面研究的重点之一。按照透水沥青路面高黏改性沥青的技术要求,分析了透水沥青路面高黏改性沥青的材料组成特点,以延度、针入度和软化点等常规指标以及60℃动力黏
化工过程设计及控制是两个重要问题,将设计和控制集成到一个优化框架中具有重要意义,这种集成设计方法依赖于控制性能是过程固有属性这一事实。变压精馏(PSD)与萃取精馏(ED)是工业上非理想混合物的主要分离方法。在ED过程中,使用离子液体替代有机溶剂能避免其带来的环境与安全问题。目前PSD和ED过程合成采用传统设计程序,控制因素在过程设计后考量,没有研究在设计优化阶段考察过程控制性能。本文通过计算年总费
均四甲苯作为一种重要的化工原料,在聚合物、半导体材料以及纤维等的合成工业中应用广泛。偏三甲苯-甲醇烷基化制备均四甲苯是一条绿色环保的工艺路线。本文考察了分子筛类型、HZSM-5分子筛硅铝比、载体种类、活性组分担载量、金属和非金属组分改性、改性组分负载量以及工艺条件等因素对烷基化催化剂活性、选择性和稳定性的影响规律,评价了改性分子筛催化剂在烷基化反应中的催化性能。HZSM-5、HY和SAPO-34三
芳烃作为重要的基础化工原料,在化纤、合成塑料和橡胶等领域得到了广泛应用。目前我国芳烃产量主要来自于石油催化裂解和重整等石油化工行业,随着我国经济快速发展,芳烃产量远远不能满足市场强劲的需求。基于我国贫油少气多煤的能源现状,开发煤基甲醇制芳烃(MTA)工艺可有效缓解我国芳烃供给不足和甲醇产能严重过剩的矛盾。MTA工艺实现大规模应用的前提是高性能催化剂的开发。ZSM-5分子筛由于具有三维微孔孔道结构,
清洁能源的使用是未来能源发展的大趋势,对柴油的硫、氮含量和十六烷值也提出了更高的要求。非负载催化剂具备很强的加氢活性但开环选择性较差,将具备酸性组分的分子筛与非负载催化剂组合,采取不添加水的固相反应法制备出的双功能催化剂具备很好的应用前景。采用固相反应法制备出APO-5分子筛,掺杂金属Ni、Mo。在合成温度为200℃,晶化时间36h时具有最佳的加氢活性和开环选择性。金属加入量会影响催化剂的结构,金
中国是煤炭生产和消费大国,拥有世界排名第一的煤炭储量。煤焦油是由煤热裂解得到的液态产物,而煤焦油浆态床加氢尾油(>500℃馏分)约占煤焦油原料的7wt%~9wt%,粘度大、软化点高,含有大量金属催化剂,常规利用难度大,但其具有较高的C/H原子比,具有制备中间相炭微球的基本条件。为此,本论文采用溶剂萃取法对煤焦油浆态床加氢尾油进行预处理,得到煤焦油浆态床加氢尾油甲苯可溶物,以煤焦油浆态床加氢尾油甲苯
近年来,我国的废轮胎产量急剧上升,传统的回收工艺无法实现废轮胎的资源化利用,而废轮胎的热解工艺因其无法连续操作而存在热解温度高、热解效率差等缺点。因此提出将重油与废轮胎粉混合共热解的方式来克服以上缺点,然而废轮胎粉和重油在混合过程中存在严重的溶胀反应,导致混合原料粘度激增、稳定性变差,引起混合原料输送过程的管道堵塞。本文以重油和废轮胎粉为研究对象,根据废轮胎粉与重油混合原料在不同温度下的性质变化,
氮氧化物是当今世界造成环境污染的主要组成物之一,引发诸如光化学污染、酸雨等一系列环境污染问题,导致柴油车的推广和应用受到限制。近年来,随着我国相关法律法规的日益完善及严苛,对柴油车尾气排放提出了更高的要求。同时,由于汽油机上广泛使用传统的三效催化剂(TWC)在富氧水汽条件下易失活,不能满足柴油车尾气排放处理要求,因此寻求一种能够有效处理柴油车尾气排放中的NOx的催化剂成为人们关注的热点。本文分别以