论文部分内容阅读
稀土电解企业在电解生产中所采用的石墨阳极为垂直柱面形,这类阳极存在消耗速率快,有效使用时间短,残余浪费量大,并且由于电解过程中阳极发生消耗,导致电解槽内物理场分布不合理等问题。因此在阳极结构方面的改进优化对减少阳极残余浪费及降低生产成本、提高阳极的更换周期和电解槽电解效率具有较高的理论意义和实际应用价值。本文以某企业8kA稀土电解槽为原型,在现有电解槽结构基础上,基于电场理论、传热和传质理论和二次电流电化学腐蚀理论,运用辅助仿真设计平台对阳极结构参数进行优选,具体研究内容如下:(1)对实际稀土电解槽电解过程中阳极的腐蚀消耗过程进行研究,分析阳极腐蚀消耗之后发生的形状变化,结合生产数据分析阳极消耗对稀土金属产量的影响,以及分析阳极消耗的机理。(2)采用有限元分析法,建立了稀土电解槽三维电场模型,模拟得到了稀土电解槽内三维电场的分布结果,分析了阳极消耗和不同阳极结构对三维电场分布的影响。并对阳极全倾角?和半倾角?进行了优化,同时在此基础上进一步对阳极插入深度h进行了优化,得到了电场分布较为合理的两个阳极倾角和插入深度参数组合。(3)建立了电热耦合模型,模拟得到了电解槽内热场的分布结果,分析了阳极消耗和不同阳极结构对三维热场分布的影响。模拟结果表明采用优化之后的两组阳极结构,电解槽内电解温度处于最佳电解温度的范围更大,验证了这两个阳极结构参数组合的合理性。(4)在阳极结构优化基础上,建立了二次电流电化学腐蚀模型,对电解槽电解过程进行了电化学腐蚀瞬态仿真,得到了阳极在电解过程中的腐蚀消耗规律,并发现模拟结果与实际生产数据较为吻合,验证了该模型的正确性。同时发现阳极结构优化后,能延长其有效使用时间,并且采用对角阳极更换顺序能提高阳极的耐消耗能力。