论文部分内容阅读
煤炭地下气化技术作为煤炭资源绿色开采、清洁利用的重要技术手段之一,具有极大的发展空间。该技术不但能够减少煤炭资源开发对环境的影响,并且能够回收传统井工开采难以回收的煤炭资源,提高煤炭资源的回收效率,为建设资源节约、环境友好型社会提供重要的技术支持。然而,煤炭地下气化技术目前仍处于开发研究的早期阶段,大规模推广应用仍然存在诸多问题需要进一步研究。特别是在气化过程中燃空区围岩的移动破坏导致的气化炉失稳、地下水污染等问题,目前的研究尚显缺乏。本文通过力学实验、理论分析、数值模拟相结合的方法,针对煤炭地下气化过程中气化燃空区烧变围岩的高温变性特征,对高温烧变围岩的移动破坏规律、煤炭地下气化采场气化炉-隔离煤柱的设计方法展开了系统的研究,取得了以下成果:(1)研究总结了煤系地层常见的泥岩-砂岩热力学特性随温度的变化规律,并对煤炭进行了高温-冷却环境下力学实验,实验结果为:在100℃以下煤炭表现出脆性,当压力达到抗压强度时立即破坏;当温度达到200℃及以上后,煤炭表现出延性,当压力达到抗压强度的极限后,煤炭呈屈服流动状态。煤炭的力学参数如抗压强度、弹性模量、抗拉强度、内聚力随着温度的升高整体表现出三个阶段的变化:(1)在温度升至100℃左右时,其力学性能略微增强;(2)在200~400℃时其力学性能急剧下降;(3)当温度大于400℃后其强度保持稳定。(2)建立了基于燃空区围岩热学参数动态变化的煤炭地下气化围岩内部温度场的扩散模型,基于该模型计算了燃空区围岩内部各处的温度极值及扩展范围。基于乌兰察布煤炭地下气化实验区的基本概况,认为煤炭地下气化过程中温度场在顶板内部的传播范围为11.4m,底板内部传播范围为9.3m,两侧煤壁的传播范围为9.6m。基于煤岩力学特性随温度变化规律的研究成果,建立了基于动态参数的燃空区烧变围岩移动破坏的数值模拟方法,为研究煤炭地下气化围岩移动破坏机理打下了坚实的基础。(3)利用FLAC3D进行数值模拟发现,改变煤炭地下气化围岩移动破坏特征的主要原因是高温引起的煤岩力学特性变化,热应力在整个过程中影响较小。利用3DEC建立了离散元模型,模拟了传统开采、煤炭地下开采条件下不同采面宽度围岩的移动破坏规律。结果显示随着采面宽度的增加垮落带及裂隙带高度都在不断增加,气化开采时顶板垮落带高度与裂隙带高度及顶板的下沉量都大于传统开采。通过对比不同岩性条件下的煤炭地下气化顶板移动破坏特征可知,顶板岩石的力学性质受高温影响越大,顶板变形破坏特征变化越大,由于泥岩的力学特性在高温的作用下衰减程度大于砂岩,故同样采面宽度下砂岩顶板的移动破坏程度小于泥岩顶板。(4)随着采区气化面数目的增多,覆岩破坏高度及煤柱塑性区域的宽度都有所增加,但变化很小。同时顶板最大下沉值不断增大,且最大值出现在采区中部。数值模拟发现,当采出率接近50%后,气化采场稳定性快速衰减,极易造成顶板失稳、煤柱垮塌的现象。当燃空区宽度大于24m时,基本顶开始破断,垮入气化通道,影响气化进程。因此,在保证气化通道稳定性的基础上,气化炉宽度设置在16m~24m间,采出率在40%~50%时较为合理。(5)基于大板裂隙理论及极限平衡原理分析了隔离煤柱内部的应力分布,建立了隔离煤柱屈服区的计算方法。在此基础上结合煤炭地下气化特殊的隔离煤柱形态及高温烧变特征,推导了梯形高温烧变煤柱的屈服区宽度的计算模型,提出了基于屈服破坏区宽度及基于极限承载的隔离煤柱稳定性评价模型。(6)将基于微分求积法的状态空间方程解法应用于煤炭地下气化高温烧变顶板移动变形研究,解决了煤炭地下气化烧变顶板变形的求解问题。建立了固支、简支状态下高温烧变顶板极限跨距的计算方法。结果显示:随着顶板厚度的增加,烧变顶板与非烧变顶板的极限跨距都随之增加,顶板厚度相同时简支条件下非烧变顶板极限跨距小于高温烧变顶板,且随着顶板厚度的增大烧变顶板极限跨距的增长速率小于非烧变顶板;固支条件下高温烧变顶板的极限跨距大于非烧变顶板,且随着顶板厚度的增大烧变顶板极限跨距的增长速率大于非烧变顶板。(7)基于地下气化区域围岩协同变形思想,将多条带气化面顶板变形看作燃空区顶板变形与煤柱应力集中造成的煤柱及顶底板压缩量的总和,建立了基于燃空区围岩协同变形的顶板下沉模型。基于该模型建立了基于顶板下沉空间与等价采高的地表沉陷预计方法:当燃空区宽度较小、隔离煤柱稳定时,可认为顶板下沉空间全部传递到地表,此时可计算顶板下沉空间将其转化为等采高的采空区,并利用概率积分法进行地表沉陷预计,通过数值模拟及实例计算显示该方法能够很好的应用于煤炭地下气化地表沉陷预计中。该论文有图116幅,表9个,参考文献172篇。