论文部分内容阅读
随着电子元器件不断趋向集成化、微型化以及高频化发展,由此引发的电磁干扰与辐射造成了信息传输过程中的泄露、失真、滞后、不稳定等棘手问题越发凸显。探寻具有厚度薄、质量轻、吸收频带宽、抗氧化腐蚀能力强的电磁波吸收材料,消除日益严重的电磁污染已迫在眉睫。低维碳基复合材料由于相对较轻的质量、优异的耐候性、较高的介电常数、特殊的尺寸效应与界面极化机制,是当前倍受关注的一类吸波材料。然而容易与空气阻抗失配、吸收强度弱、频带窄、合成过程复杂、产率低等因素限制着低维碳基复合材料的实际规模化应用。基于以上的瓶颈,本论文采用产率高且易操作的直流电弧等离子体法,通过复合异质组元与异质原子掺杂的方式调控碳基纳米吸波材料的电磁性能:首先结合具有较高饱和磁化强度的磁性金属Co、耐氧化腐蚀的陶瓷TiC与轻质碳制备了(Co/TiC)@C纳米复合粒子,其特殊的双核@壳结构与多组元成分有助于增强磁、介电损耗,主要研究了双介电损耗组元含量与微观结构的调控对吸波性能的影响;其次,通过对比(TiC/Ni)@C和TiC@C两种纳米粒子的电磁响应特性,侧重分析了磁损耗强度与双核@壳纳米粒子吸波性能之间的关联;之后,构建了氮掺杂碳包覆陶瓷TiCN纳米立方体结构,与密度较大的磁性金属相比,轻质氮原子掺杂碳层增加其晶格缺陷,弱化整体的电导损耗,亦可以提升介电材料的阻抗匹配程度;在此基础上,合成了氮掺杂的富缺陷石墨烯片以实现质量更轻的高效碳基纳米吸波材料,相对于上述的零维纳米粒子,二维纳米片具有更大的比表面积可提供更多的电磁波响应位点。全文的主要研究内容及相关结果如下:(1)采用直流电弧等离子体法制备了以磁性金属Co、碳化物TiC为双内核,富晶格缺陷的石墨C为外壳的(Co/TiC)@C双核壳纳米粒子。通过提高CH4/Ar的气体比例,增加C壳的厚度与TiC的物质含量,提升整体的介电损耗强度,以此达到与金属Co较强的磁损耗相互平衡与协同的目标。使用XRD与TEM表征了双核@壳微观结构,结果表明,内核金属Co与碳化物TiC均呈现面心立方结构,没有密排六方Co、Co2Ti以及CoTi2等杂相生成。Raman光谱证实C壳的有序晶畴尺寸随CH4浓度的逐渐提高从3.05 nm、3.52 nm增大至4.70 nm。反射损耗计算结果表明,当CH4/Ar=1:4时,所制备的(Co/TiC)@C纳米粒子在8.76 GHz处,最小反射损耗高达-66.59 dB,对应的厚度值仅为2.56 mm。优异的吸波性能主要归因于电偶极子极化、界面极化、自然共振以及高频交换共振,而较厚的碳包覆层具有阻碍表面涡流的作用,涡流损耗贡献较小。(2)使用不同的阳极靶材,但保持制备气氛与电弧输出功率固定,分别制备了TiC@C与(TiC/Ni)@C两种纳米复合粒子。采用TEM对两种纳米粒子进行微观结构观察发现,两者均呈核壳不规则椭球状,粒径主要分布于20~70 nm范围内。Raman光谱结果显示,TiC@C纳米粒子的(ID/IG)A为1.15,而对应的(TiC/Ni)@C双核壳粒子的(ID/IG)A增至1.32,这表明金属Ni引入TiC/C基体中,会增大C壳的晶格缺陷程度。由电磁响应特性发现,与TiC@C粒子相比,(TiC/Ni)@C粒子的介电常数实部与虚部呈现明显的减小趋势,主要因为金属Ni的复合降低TiC/C基体的均一性,增强对电子的散射能力,从而弱化了整体的电导损耗。与此同时,与磁性组元复合有效提升了基体的磁损耗能力。(TiC/Ni)@C粒子的最小反射损耗为-43.4 dB,是TiC@C粒子最小反射损耗的2.38倍。(3)以CH4-N2-Ar组成的混合气体作为制备气氛,通过直流电弧等离子体蒸发高纯Ti块体,原位自组装了氮掺杂碳包覆TiCN核壳纳米立方体。高分辨TEM和选区电子衍射SAED结果均表明,内核是单晶TiCN,其沿[0-11]晶向呈六重旋转对称,由六个{100}晶面构成,外壳是具有较多晶格缺陷的石墨碳。Raman光谱结果表明,制备气氛中N2浓度从16.7 vol.%、33.3 vol.%提升至41.7 vol.%时,对应产物的C壳上晶格缺陷密度将从1.80×1011 cm-2、2.79×1011 cm-2增大至3.10×1011cm-2。增加的晶格缺陷成为电子散射中心,致使产物的静态电导率减弱,但饱和磁化强度却从0.17 emu/g、0.31emu/g增至0.54emu/g,主要与C壳中吡咯氮的含量增大相关。在厚度仅为1.88mm时,有效吸收频宽(反射损耗≤-10 dB)高达5.44GHz,主要归因于弱化的电导损耗与增强的磁共振提升了整体的阻抗匹配程度,同时单晶TiCN与富缺陷C壳之间的异质界面有助于诱发界面极化效应。(4)采用直流电弧等离子体蒸发高纯石墨碳棒,通过调节制备气氛中的N2/CH4的气压比例,制备了氮掺杂含量不同的石墨烯纳米片。高分辨TEM结果表明,纯石墨烯纳米片的横向尺寸约为200~300 nm,厚度约为1.3 nm,而氮掺杂的纳米片N1-GN和N2-GN的横向尺寸主要分布于50-150 nm范围内,但厚度却有所增大,两者的厚度分别为3.5nm与7.2nm。此外,SAED与Raman结果均证实,纳米片中氮含量的增大,将导致生成更多的晶格缺陷。反射损耗计算结果表明,纯石墨烯纳米片的最小反射损耗仅-16.6 dB,而氮掺杂含量为4.6 at.%的N1-GN最小反射损耗在7.3 GHz处高达-43.2 dB,对应的厚度值为2.9 mm。优异的吸波性能主要归因于二维N掺杂纳米片提升的阻抗匹配程度与适当的电磁衰减能力之间的协同效应。