论文部分内容阅读
核聚变能具有经济性能优越、安全可靠、无环境污染等优势,被认为是最有希望解决人类能源问题的终极能源。钨及钨合金因具备高熔点和优异力学性能等优势被认为是聚变堆装置中极具潜力的面向等离子体材料。但极端服役的环境给它们的应用提出了巨大挑战,特别是钨脆性问题及材料的氢同位素滞留行为,研究至今仍存在一些问题,例如:实验中研究仅获得了有限温度下钨的增韧机制,典型合金元素对氢在钨中行为的影响研究不够系统,氢逃逸到钨与其他材料连接界面的研究成果较少,缺少强化界面结合性能的理论机制等。基于此,本文采用高精度密度泛函理论的第一性原理计算开展理论研究,全文获得的主要结论如下:(1)第一性原理计算、准谐德拜模型结合热电子激发获得了钨和钨铼合金的热力学性能,以及在0-2000 K温度范围内弹性性能和G/B值的变化规律。结果表明,合金元素Re降低了钨的力学性能和理想强度;理想应变条件下,钨及钨铼合金易失效晶面为(100)面;钨及钨铼合金力学性能随着温度的升高而下降,脆性随着温度的升高而增加。某一确定温度下,钨铼比纯钨具有更小的G/B值,表明Re添加改善了钨的脆性。深入对比随着温度变化的弹性模量、体模量和G/B值的曲线,发现温度的升高减小了Re对钨韧性的改善效果。(2)计算研究了氢在钨、钨铼和钨钼合金中的占位,发现氢在四面体间隙位置可以保持住BCC结构,在八面体间隙位置最终弛豫成了BCT结构。同时,研究也表明WH、WRe H和WMo H相在力学角度上可以稳定存在,并且Re比Mo对WH相的增韧效果更明显。另外,本文也获得了氢在钨、钨铼和钨钼合金中的溶解度和扩散系数,结果表明,合金元素Re和Mo添加对氢在钨中的溶解具有一个相反的趋势,即:Re降低了氢溶解度,Mo促进了氢溶解度。然而,合金元素Re和Mo添加都能降低氢在钨中的扩散势垒,促进氢的扩散。综合考虑氢溶解和扩散的过程,发现Re在钨中的添加减小了氢的渗透率,Mo的添加增加了氢的渗透率。(3)计算对比了氢在钨铁块体和钨/铁界面的结合能,发现氢在界面位置存在一个负的结合能,表明界面的形成促进了氢的稳定性。结合Sievert定律,本文获得了600-1600 K温度范围内氢在界面处的溶解度。这个温度范围氢在界面处的溶解度均远大于钨铁块体氢溶解度,表明氢在界面处易积聚形成氢泡。同时,氢在界面的溶解度随着温度的升高而降低,这与氢在钨铁块体中的溶解度的规律相反,这意味随着温度的升高界面形成的影响将逐渐减小。另外,研究也获得了氢对界面结合性能的影响,即:氢在界面O1,O6和T5位置促进了界面结合性能,在T1,T2,O2和O4位置氢具有一个相反的结论。(4)研究讨论了合金元素Re和Cr原子在界面处的结构稳定性和界面结合性能。结果表明,Re和Cr原子均容易取代界面层铁原子。Re原子取代铁原子可以强化界面强度,改善界面稳定性,增加界面断裂韧性,而Cr原子只有取代界面层铁原子才能强化界面结合性能。另外,为更大程度兼顾钨/铁梯度界面结合强度和界面断裂韧性,缩小钨铁物理性能差距,本文提出了一种强化界面结合性能的W4/W2Fe2/Fe3W1/Fe4四层梯度设计方案。最后,这些结论都从电子结构和电荷转移的角度进行了深入的理解。纵观本文研究,系统探讨了钨及钨合金热力学与界面性能,揭示了温度对钨及钨铼合金强韧化机制,研究了典型合金元素对氢在钨中和钨界面行为的影响规律。结论表明合金元素Re可以改善钨韧性,促进界面结合,抑制氢在钨中的滞留,在钨中的添加比Mo和Cr具备更优异的性能表现。研究也讨论了钨/铁界面氢泡形成的机制,探索了强化钨/铁界面结合的方案,为聚变堆用材料的设计和选择提供了借鉴意义和理论依据。