【摘 要】
:
本文考虑如下S-L问题: BVP(1.1) 其中R1(u(?))=?u(?)??p(?)u?(?), R2(u(1))=?u(1)??p(1)u?(1), f(x,u)连续,关于u满足局部李氏条件,且对于固定的x, f(x,u)关于u是奇函数, f(x,?)??,uf(x,u)>?,当u??.当f(x,u)关于u是次线性时,1962年G.H.Pimbley用相平面
论文部分内容阅读
本文考虑如下S-L问题: BVP(1.1) 其中R1(u(?))=?u(?)??p(?)u?(?), R2(u(1))=?u(1)??p(1)u?(1), f(x,u)连续,关于u满足局部李氏条件,且对于固定的x, f(x,u)关于u是奇函数, f(x,?)??,uf(x,u)>?,当u??.当f(x,u)关于u是次线性时,1962年G.H.Pimbley用相平面的方法给出了BVP(1.1)解的全局结构(见[1]).上世纪八、九十年代之后人们开始用拓扑度和迭合度的方法(自治方程有时用时间映射)研究超线性BVP(1.1)正解,多重解的存在性(见[2]-[7]).但是由于拓扑度方法本身的局限性,这些文章未能给出超线性BVP(1.1)解的全局结构.本文受文[1]的启发,应用相平面的方法研究了超线性BVP(1.1).本文的主要结果如下.设limu?? f(x,u)?u=?(x),limu?? f(x,u)?u=?(x),fu??,ufuu>0,当u??.令??n?和??n?分别表示边值问题 和 的特征值,则我们有 定理1 如果上述条件满足,则区间??n??n?(n ?1)属于BVP(1.1)的谱集.当????n??n?时 BVP(1.1)至少存在两个符号相反的解un?x???和?un?x???,它们在 (?,1)之间恰有n-1个零点。特别地当????1??1 ?时,BVP(1.1)至少存在一个正解和一个负解.而且 ?? un?x??? ??C[??????, ???n; ?? un?x??? ??C[??????, ???n.并对任意 m?(?,??,存在????n??n?使得BVP(1.1)存在非平凡解un?x???,满足?? un?x??? ??C[????=m. ?=?n是分歧点,这时?? un?x??? ??C[????=?.如果p(x)??,f(x,u)=f(u),即BVP(1.1)是自治方程,则定理1中的“至少”和“属于”分别改为“恰有”和“组成”. 我们的结果给出了BVP(1.1) 解的全局结构一个相对清楚的描叙,特别是对于相应的自治方程特征问题我们更是给出了其解的全局结构一个完全清晰的刻划, 从而自然地蕴含了[2]-[7]中的结果.遗憾的是对于BVP(1.1) 当????n??n?时在(?,1)内有n-1个零点的解是否恰有两个以及当??[?n??n]时BVP(1.1)是否存在解尚不清楚.
其他文献
本文主要讨论了有关独立情形,进而B值、NA r.v.序列的极限理论。其中第一章讨论了在独立不一定同分布r.v.序列下,关于收敛速度问题,我们把已有的结果放宽到了范围更广的满足函数集ψ1={φ(x):φ(x)是非负的偶函数,且存在x0≥0,φ(x)/x2、x3/φ(x)在(x0,+∞)上拟增}的函数序列{φn(x),n≥1},从而使文[1]、[2]的相关结果为其特例,同时我们讨论了NA条件下类似的推
本文研究一类具Holling-IV型功能反应函数的捕食者-食饵系统: 由其生态意义,只在(R+)|-2 ={(x,y)|x≥0,y≥0}上对系统(*)进行讨论。第一部分,对系统(*)奇点的性态,特别是对正平衡点的性态作出了全面的定性分析; 第二部分,运用Poincare形式级数法进行细焦点的焦点量的计算,得出了正平衡点( x1 ,y1)至多为二阶稳定细焦点的结论; 第三部分,给出唯一正平衡点( x
本文主要从大数定律和完全收敛性等方面研究了两两NQD列和PA列的收敛性质,内容包括如下三章: 第一章给出了两两NQD列和PA列等一些相依列的概念,简要介绍了国内外研究这些相依列极限理论的成果,以及它们的理论意义和应用价值。在第二章中,先定义了行为两两NQD的随机变量阵列,引入了随机变量阵列的Cesáro一致可积性以及它的等价条件。接着在Cesáro一致可积的系列条件下,讨论了行为两两NQD的随机变
本文利用完备格L上的无限分配t -模T ,探讨了∨-T型矩阵方程A T XTB= C.首先,给出了该方程可解的一个等价条件.当方程A T XTB= C可解时,为了得到该方程整个解集的算法,本文利用不可缩有限并分解,先研究∨-T型矩阵方程A T X= B的较简单形式的求解算法,进而考虑其复杂的情况.最后,在得到方程A T X= B整个解集算法的基础上,考虑方程A T XTB= C整个解集的算法.同时
设G=(V(G),E(G))为一个图,其中V(G)={v1,…,vn}为顶点集,E(G)={e1,…,em)为边集。对正整数k,我们称有序对(D,f)为图G的一个非零k-流,其中D为E(G)的一个定向,f:E(G)→{±1,±2,…±(k-1)}使得对(?)v∈V(G),∑e∈E+(v)f(e)=∑e∈E-(v)f(e)成立。这里E+(v)和E-(v)分别表示对定向D而言所有从v出发的边的集合和所
无锡市实验幼儿园创建于1952年,是江苏省最早的实验示范园之一,也是无锡市第一所省级示范性实验幼儿园。幼儿园以"为孩子成功的一生奠定良好的素质基础"为办园宗旨,坚定追寻"让幼儿园成为呵护孩子生命成长的爱心家园"的教育理想。无锡市实验幼儿园始终坚持走"科研兴园"之道,从"十一五"开始,幼儿园潜心于幼儿"经历学习"的研究,依托全国教育科学规划课题,开展了"基于幼儿成长需要的‘经历学习’的研究",
拟合和预测是回归分析两个重要的应用,现有的研究工作大量是以提高拟合精度为目标的,而致力于预测的研究相对较少。对于预测,传统的做法一般是根据已有样品数据求得回归模型,并利用各种方法提高已有样品的拟合精度,然后用于新样品的预测。这种做法没有考虑到新样品的作用,新样品或许不会改变基本模型的确定,比如说仍然是线性回归模型,但还是存在极大可能会改变模型中参数的估计结果。在这种情况下,继续使用完全基于旧数据得
(S)-2-辛醇是合成铁电液晶材料和许多光学活性药物的重要中间体。目前(S)-2-辛醇的合成主要采用酶催化还原和酶催化拆分法。本工作采用酵母FD-12催化还原2-辛酮,合成(S)-2-辛醇。从不同的酵母菌株筛选获得酵母菌株FD-12(Saccharomyces cerevisiae),对底物2-辛酮具有较高的催化还原活性和对映体选择性。还原产物主要是(S)-2-辛醇。研究了纯水相反应体系中FD-1
在马克思的批判理论中存在着多重"复调式"的批判话语,但将他与以往的资本主义批评者从原则高度区分开来,并超越纯粹的功能批判或规范批判的,则是内在批判的方法。所谓内在批判,就是通过透视生活世界的对抗、分裂与歧异现象,揭示社会现实本身的内在矛盾本质及其历史生成、总体结构和演化趋势。面对资本逻辑对现代社会生活政治、经济与文化诸领域的总体化殖民,马克思通过对资本逻辑二重性的内在批判,不仅洞察了现代社会有机体
本文首先讨论Logistic和Lorenz系统的Lyapunov指数,这两个半动力系统在某些特定的参数下是混沌的。然后,利用这两个混沌系统对初值的敏感性等特性给出了构造单向散列函数的一种新算法。最后,通过分析说明本文所构造的单向散列函数具有良好的随机性和抗碰撞性。因此,在数字签名和认证系统方面有着广阔的应用前景。