面向防冰的周期性等离子化纳结构表面液滴相变基础研究

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:kiujiabing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
云层中的过冷液滴撞击飞机表面后会产生结冰,结冰会使得飞机的气动性能等迅速下降,是飞行期间的重大安全隐患。防冰是预防结冰的重要手段,对飞机关键部件进行防冰是飞行过程中必不可少的工作。目前飞机上应用的主流防冰方法有热气防冰和电加热防冰,但飞机需防冰区域面积大,这些方法都存在着功耗高的问题,难以在飞机上大面积部署、长时间使用,且用于机翼的热防冰结构也一定程度上影响了机翼的气动性能。因此,在保证防冰效果的同时降低功耗,使防冰结构容易部署、并能够尽量不影响飞机的气动外形成为亟待解决的重要问题。等离子体防冰作为目前新的防冰手段,具有响应快、几何结构简单和容易贴附部署等优点,能解决热防冰带来的一些问题,但其电压、功率高以及能量利用率低仍是其防冰应用中一个待解决的问题。围绕等离子体防冰中功耗高、能量利用率低的问题,本文引入周期性等离子化结构,提出了一种等离子体与金属电极阵列交替分布的周期性等离子化激励器(Periodic Plasma Actuator,PPA),通过合理排布的周期性等离子体结构来提高等离子体区域的能量利用率,并在金属电极上耦合纳米结构来改善放电性能,优化功耗。飞机结冰是伴随着液滴撞击机翼后产生液滴动力学效应的特殊相变现象,而防冰主要通过换热使过冷液滴碰撞后温度达到结冰临界点以上,从而无法凝结成冰或者直接蒸发,这两者都是液滴相变的过程。基于此,本文搭建了液滴相变探究系统来探究周期性等离子化结构对液滴相变过程的影响,并利用高速摄像机和红外摄像仪等系统地进行了以下创新性的研究:1)周期性等离子体对于液滴相变过程和蒸发功耗的影响:周期性等离子体存在时,液滴碰撞后会拥有更大的铺展直径、更低的尖峰高度以及更小的静态接触角,且等离子体密度增加会正向促进该现象。当PPA表面周期性等离子体与电加热产生相同表面温度场时,PPA加热功率是电加热的1/3,但液滴在PPA表面的蒸发效率是电加热的2.2倍。2)电极耦合纳结构的PPA对于液滴相变和蒸发功耗的影响:为了进一步降低PPA表面液滴的蒸发功耗,我们尝试在PPA金属电极阵列上生长氧化锌纳米结构,并得到电极耦合氧化锌纳结构的PPA(ZnOPPA),成功地使得相同放电参数下ZnO-PPA每平米功率较PPA降低了1.023k W,并促使相同蒸发效率下所需要的功率大幅降低。3)发现了液滴在纳电极结构产生的周期性等离子体中特殊的铺展形态:相较于周期性等离子体中液滴的椭圆形铺展形态,液滴在周期性等离子体纳结构中铺展时会沿着周期性等离子体区域中向液滴外围扩散,总体呈现中心向四周辐射状,提高了液滴与热源区域的接触面积,加快了液滴的蒸发速度。最后我们对目前的研究工作进行了总结,并对下一阶段中PPA的优化方向以及后续的防冰研究进行了展望。
其他文献
蜂窝夹芯结构被广泛的应用于飞机的机翼前缘、舵面、发动机整流罩等处,因此易承受较强的气动噪声。为了分析该结构在随机噪声载荷下的疲劳寿命,本文采用了功率谱密度法(Power Spectral Density,PSD),并结合P-M(Palmgren-Miner)线性累积损伤理论、S-N曲线、概率密度函数等计算结构危险点的声疲劳寿命。本文的研究内容为:1.引入温度对材料力学性能的影响,计算在不同温度、不
复合材料夹层结构由于其密度小,比强度和比刚度高而被广泛应用于各个领域,但是在使用过程中易遭受低速冲击后产生损伤。含损伤的复合材料夹层结构其强度会大大降低,严重影响其使用安全性,因此,研究夹层结构在低速冲击后的抗疲劳特性具有必要的现实意义。本文对三种不同铺层方案的复合材料夹层结构进行了低速冲击试验,先确定各个铺层试样产生1mm凹坑所需冲击能量,再以此冲击能量冲击其余试样以保证所有试样产生等效的损伤。
本文提出了一种针对机身尾段多层蒙皮复合材料的铺层方法。对多层复合材料结构,在初步设计前,通常需要建立对应的理论和数值模型,并进行计算。本文由于面向一般性的复合材料,因此提出铺层设计方法同样适用于其他航空部件。本文的研究方法是,建立机身蒙皮的强度理论模型和数值模型,并依此对结构参数进行优化设计。本文展示了理论计算的结果,并提出了一个选择多层复合材料结构建设性、技术性方案的方法性原则。本文使用带桁条、
碳纤维复合材料有着比强度大,比刚度高,性能可设计性等特殊优势,故成为了航空航天领域比较优先考虑的材料之一,而碳纤维复合材料结构在使用时极易受到冲击损伤的影响,而冲击损伤会影响到复合材料的剩余强度,本文主要研究了碳纤维曲板受到冲击后的损伤失效模式与含冲击损伤的复合材料加筋板的弯曲失效模式:(1)基于连续介质损伤理论的应变能等效假设推导出复合材料损伤后的刚度阵,利用三维Hashin准则判断单元失效,并
民机作为现代常用出行交通工具,一直是研究的重点,而起落架是飞机的一个极其重要的组成部分,它的工作状况对飞机的运行安全造成了直接影响。但是,目前民机起落架的设计工作主要集中在局部的结构、机构、系统可靠性以及可靠性方面算法的改进等方面,对于以起落架的需求和预防故障为出发点的概念设计研究尚未涉及。在这种情况下,本文尝试结合质量功能展开QFD和故障模式与影响分析FMEA方法应用到民机起落架的研究工作中,进
这项工作的主题是相关的,具有重要的实际意义。航空燃气涡轮发动机的生产是飞机制造最优先和知识密集的领域之一。航空设备生产的现代趋势旨在减少制造产品的技术周期,提高其技术和经济特点,并降低生产成本。这些趋势的实施是可能的,由于使用新的材料,现代化的制造方法,各种保护涂层的应用到其表面和减少技术操作的数量。现代GTE的高负荷零件和组件的主要要求是高硬度和耐腐蚀性,这取决于零件的表面层的条件。本论文致力于
航空燃气轮机的设计中包含了大量受热的部件,其中最重要的部件之一是燃气轮机的燃烧室。为了提高整个系统的效率,有必要对受热壁面提供必要的冷却。本文提出了一种提高冷却效率的方法。由于采用了增材技术,消除了传统生产存在的一些技术限制,能够创建更复杂的冷却通道几何结构,从而显著提高了冷却效率。本文工作分为五个主要部顾,并对材料的使用和生产原理进行了研究。第二部分描述了通过改变关键参数来改变通道形状的方法。在
复合材料层合板的疲劳寿命分析是飞机设计中的重要问题。研究表明,用于金属和复合材料疲劳分析的模型和方程通常只适用于试样的疲劳寿命预测。本文基于一系列疲劳分析的模型和方程,旨在开发了一种适用于飞机复合材料结构元件的疲劳寿命评估方法,该方法测试少且具有较好的精度。本文综述了相关研究,在此基础上选择了相关的方法用于建立本文的方法。本文研究的模型有Mandell疲劳寿命拟合方程,Beheshti-Harri
飞行器表面防冰是保障航空航天安全发展的重中之重。等离子体防冰方法有诸如气动性能损失小、响应迅速、效率高等优点,是一种研究潜力巨大的新方法。单个液滴的形态与初始动力学特征固定,研究单个液滴与等离子体相互作用有助于等离子体防冰机理基础研究的推进,探索并理解液滴在等离子体驱动器表面的动力学行为和蒸发过程,是未来研制防冰专用的等离子体驱动器方法论的基础保障。研究者们虽然已经对等离子体防冰方法展开了探索,在
飞机结冰对飞机的安全和性能都会造成不利的影响,为解决结冰带来的不利影响,人们开发设计了一系列防冰表面。已有大量研究证明仿生超浸润表面在防覆冰领域具有优异的性能,如仿“荷叶效应”的超疏水涂层和仿“猪笼草”的液体注入式润滑层表面。然而,目前很难有一种防冰材料表面能同时实现低的冰附着强度和长的防冰寿命。基于高效和长效两个原则,本文基于聚膦腈材料优异的化学结构可设计性特点,构建聚膦腈/聚二甲基硅氧烷低表面