论文部分内容阅读
水体中的氨氮易导致湖泊出现富营养化现象,氮污染严重地影响着水体生态系统和人类的健康。膜生物反应器(MBR)技术在污水处理领域,特别是污水回用和高浓度氨氮废水处理方面在技术上和经济上具有巨大的潜力。本文主要研究采用MBR去除废水中高浓度氨氮的最佳工艺。本文系统开展了应用生产规模MBR、序批式好氧MBR(SOMBR)、序批式缺氧/好氧MBR(SAOMBR)、连续式缺氧/好氧MBR(CAOMBR)、连续式好氧/缺氧/好氧MBR(COAOMBR)5种工艺去除废水中高浓度氨氮的试验研究。对每一种工艺的氨氮(NH4+-N)和总氮(TN)的去除效果进行了分析,重点分析影响硝化和反硝化作用的因素。首先研究了生产规模MBR中的溶解氧(DO)分布特征及其对出水水质的影响,归纳出了DO与温度和高径比之间的模型,并使用该模型对生产规模MBR中DO过低的原因进行了说明。当有效水深为1.21.45 m、当量直径为1.54m时,氧的利用率较低,反应器内的大部分位置的DO在0.10.5 mg/L。采用序批式MBR处理高氨氮废水时硝化反应为零级反应,以NH4+-N表示的反应速率常数为64.45 mg/(L·h),是传统活性污泥法的13.7倍;以NO2--N表示的反应速率常数为21.06 mg/(L·h),是浮动床生物膜硝化反应器的2倍。详细研究了连续式MBR的硝化、反硝化能力以及影响因素,总结出了短程硝化-反硝化脱氮的操作条件,开展了短程硝化和厌氧氨氧化组合工艺脱氮的可行性试验。对比介绍了各种工艺中膜污染情况,分析了每种工艺造成膜污染的主要因素,提出了减缓膜污染的措施。通过各种工艺的比较,最后得出结论:当NH4+-N去除率>98%且碳源充足时,采用CAOMBR工艺对TN的去除率受回流比影响较大,而采用COAOMBR工艺去除废水中的高浓度氨氮能够获得很高的脱氮效率。