碳纳米管增强泡沫铝填充金属管的制备及其压缩行为和吸能性能

来源 :天津大学 | 被引量 : 0次 | 上传用户:linxulong07
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着航空航天事业和轨道交通运输业的飞速发展,人们对于具有轻质、高强、吸能效率高等特性的高性能缓冲吸能构件的需求日益增加。泡沫铝填充金属薄壁管复合结构(简称填充结构)不仅具有优异的吸能特性,还具有较高的独立承载能力,可以作为缓冲吸能构件应用在交通运输、机械制造等领域。但是,填充结构在获得较高机械强度的同时,往往会额外增加构件的重量。碳纳米管增强铝基(CNT/Al)复合泡沫具有低密度、高强度等优异性能,作为填充芯材可以提高填充结构的综合性能,是解决以上问题的有效途径之一。然而CNTs在金属基体中难以实现均匀分散,影响了CNT/Al复合泡沫的力学性能,同时CNT/Al泡沫作为芯材的填充结构的力学性能研究尚属空白。本文首先采用CNT/Al复合泡沫直接填充6061铝合金薄壁管的方法制备了CNT/Al复合泡沫填充结构。采用原位化学气相沉积、短时球磨和填加造孔剂相结合的方法获得了填充所用的CNT/Al复合泡沫。重点研究了CNT/Al复合泡沫填充结构在压缩条件下的变形模式、压缩强度和吸能性能。同时结合对试样的宏观和微观表征,研究了CNT/Al复合泡沫与薄壁合金管之间的相互作用。结果表明,均匀分散的CNTs可以显著提高复合泡沫的强度,提高了CNT/Al复合泡沫填充结构的压缩强度和吸能性能,并且实现了CNT/Al复合泡沫与薄壁合金管之间有效的相互作用。CNT/Al复合泡沫在支撑合金管的同时,本身的变形也受到了限制。CNT/Al复合泡沫的变形抗力以及对合金管的支撑作用随着变形过程不断加强,对填充结构产生的增强效果逐渐提高。与此同时,复合泡沫对变形合金管的支撑作用以及对合金管形成的褶皱的填充作用极大地稳定了变形过程,CNT/Al复合泡沫填充结构的平台应力和能量吸收能力分别是薄壁合金管的约3.5倍和3.7倍。此外,CNT/Al复合泡沫填充结构比6061薄壁合金管具有更高的质量比吸能。该复合泡沫填充结构在无大幅增加结构重量的同时显著提高了结构的吸能性能,在减轻构件重量和提高吸能性能之间实现了较好的协调。该研究结果对于轻质高强的缓冲吸能结构的设计和制备具有指导意义。
其他文献
应用在刚性隔热瓦表面的高发射率涂层是航天器热防护系统的重要组成部分。研究表明,与单层致密涂层相比,具有界面梯度结构的MoSi2-硼硅酸盐玻璃涂层具有更好的力学性能,具有更大的应用潜力。然而,现阶段对于通过原位反应法制备的具有优异耐温性能的高发射率涂层,梯度界面及其力学性能的研究较少。为此,本文致力于原位反应法MoSi2-硼硅玻璃梯度涂层的制备和力学性能研究,并采用快速烧结一步法与原位反应法相结合制
激光熔覆技术是金属零件增材制造领域的重要组成部分,近年来,我国在激光熔覆理论创新和学科发展方面取得了丰硕的科研成果,并在应用方面取得了进步。激光熔覆作为一种新兴的制造技术,其优点包括:无污染、绿色环保;节约材料,降低成本,减少生产周期;成形零件致密,有较好的物理、化学、力学性能,其组织细小、均匀。因此,该技术具有极大开发和研究意义,如今激光熔覆技术在航空航天、机械工业、汽车工业等领域得到广泛应用,
搅拌铸造法因其成本低、操作过程简单、产量大等优点,被认为是实现石墨烯增强铝基复合材料大批量生产的突破口。然而,由于石墨烯与铝液之间的浸润性差、密度失配,将其直接添加到铝液中时,石墨烯容易浮于铝液表面,难以分散到基体中。此外,石墨烯与铝的表面张力差异较大,两者之间难以形成良好的界面结合,以致复合材料的强化效率和延伸率较差。因此,探索新的石墨烯制备工艺以改善石墨烯与铝液之间的浸润性,实现搅拌铸造法制备
作为一种具有良好应用前景的自旋电子材料,具有室温隧道磁电阻效应的纳米颗粒复合薄膜受到了越来越广泛的关注。对于纳米颗粒复合薄膜而言,金属含量、尺寸分布、磁性金属价态等因素对材料中电子传输过程有着重要的影响。调整制备条件和后处理工艺,可以实现材料微观结构和相对含量的调控,这对于改善自旋电子材料的隧道磁电阻性能有着十分重要的意义。本文通过磁控共溅射的方法制备了Co-TiO2纳米颗粒复合薄膜。通过溅射功率
雾气是生物医学应用中面临的一大难题,其会对医疗设备(如内窥镜等)光学镜头的功能造成干扰,而现有的防雾涂层制备通常较为繁琐且可能存在安全隐患。因此,设计开发使用简单且兼具良好生物相容性的防雾涂层尤为重要。细菌污染是生物医学应用面临的另一个难题,细菌在生物材料表面的粘附、生长及生物膜的形成可能造成一系列严重后果。当前的抗菌涂层通常存在效果不理想、功能单一等问题,因此开发杀菌-释菌双功能抗菌涂层具有重要
利用相变材料(PCMs)储能是实现可再生能源高效存储与应用的重要手段。环境温度的改变能够驱使相变材料发生相态的转变,进而实现能量的存储与释放。但是受自身结构的限制,有机相变材料存在能量密度低和相变温度难以控制的难点,使其在长效存储与可控热释放方面面临巨大的挑战,阻碍了在相变储能领域的应用。针对该问题,本文在分子设计的基础上,对具有光致异构化响应的偶氮苯分子进行了适当的官能团改性,并与低温有机相变材
新型二维碲化锗(GeTe)材料,具有类石墨烯褶皱结构,p型半导体,相关理论计算表明该材料具有优异的电子和光学性能,但受其自身结构限制,GeTe存在空气中稳定性差的问题,值得进一步的研究和探索。本论文首先通过Material Studio模拟计算了O与GeTe的结合过程,对GeTe的化学稳定性进行了分析。结果表明O原子偏向于与2个Ge原子形成更稳定的Ge-O-Ge的结构,对GeTe晶体结构产生破坏,
冷湿环境下物体表面的积冰会给交通运输、电力以及航空等领域带来极大的不利影响,为了能够有效地削弱结冰带来的危害,防覆冰涂层的研究就显得尤为重要。本文以表面能低、模量小的聚硅氧烷为主要原料,分别制备了图案化的支化形聚二甲基硅氧烷(b PDMS)防覆冰涂层和自修复润滑性聚二甲基硅氧烷-聚脲(PDMS-PU)防覆冰涂层,研究了这两种有机硅涂层的防覆冰性能和疏冰机理。通过硅氢加成反应合成b PDMS和含有3
由于现代工业需要高效高精度机械加工设备,数控机床正向高速度、高精度和大负荷方向发展,而高速重载必然使得机床部件产生大量的热,导致机床加工工艺系统的热变形,引起加工工件产生热误差,降低其加工精度。进给系统的热误差直接影响机床的定位精度,是影响加工精度的重要因素之一。因此,数控机床进给系统热特性的研究具有重要的理论研究意义和实际应用价值。本文以数控机床的进给系统为研究对象,通过理论研究、数值计算与试验
近年来,高集成电子器件在一些极端环境中的应用大幅提高,因此对于材料的使用条件更加苛刻。目前一些智能材料具有质量轻、易加工以及可以实现自修复的能力,因此成为在恶劣环境中所使用的关键材料。此外,为了获得高性能热界面材料,石墨烯由于有着高度规整的六元环结构成为了高导热填料的首选。针对低温条件下聚合物自修复速率低以及导热性能低的问题,本文通过将具有柔性分子链的氨基封端的聚二甲基硅氧烷和丙二酰氯进行缩聚,制