论文部分内容阅读
在标准模型中,描述夸克混合的Cabibbo-Kobayashi-Maskawa(CKM)矩阵一直是非常重要和基础的内容之一。半轻(纯轻)衰变因为其较大的分支比和简单的衰变形式为人们广泛研究。在半轻(纯轻)衰变中,强相互作用和弱相互作用可以很好的分离开来,通过研究衰变率提取出表征强相互作用的参数化形状因子(衰变常数)和夸克混合矩阵元,分别为描述强相互作用的QCD计算和夸克混合CKM矩阵元幺正性的检验和约束提供了重要的实验依据。2015年BESIII在质心能量(?)=4.178 GeV处获取了 3.19 fb-1的e+e-对撞数据,在该能量处得到了世界上数据量最大的Ds+Ds*-对。这将极大提高Ds+相关研究的精度,并为一些可能包含新物理的稀有衰变研究提供了机会。在基态粲强子中,相对于众多的D0/+介子的实验分析,含奇异夸克的Ds+介子因数据量的限制,研究较少,为了更好地理解Ds+介子的性质与其衰变中的强弱作用,我们研究了半轻衰变Ds+→η(’)e+ve衰变率。最近多个理论模型被相继用来计算形状因子ffη(’),分别是格点QCD、讨论了夸克与胶子混合的QCD求和规则、光锥QCD求和模型,以及一些夸克模型。形状因子的测量对于调节约束这些理论是十分重要的。该过程的另一个吸引人的地方是胶子(gluon,g)在η—η’混合中可能起到了一个重要的作用,因为QCD的U(1)反常,η’中的夸克成分和胶子有较大的耦合。η和η’均可以表达为SU(3)味八重态uu+dd-2s/(?)与单态uu+dd-ss/(?)的混合,也可表达为uu+ddd与ss夸克成分的混合,其中后者的混合角φp可以从半轻衰变中提取出,对η’中是否有胶子成分的判断有重要作用。实验上,KLOE和LHCb实验组对混合角的测量精度不高,并没有明确的结论。利用公式cot4φp=ΓDs→η′e+ve/ΓDs+→ηe+ve/ΓD+→η′e+ve/ΓD+→ηe+ve,测量混合角φP,有助于我们理解η—η’-g混合的机制。在之前CLEO-c和BESIII合作组的实验中,因为数据量不大的原因,他们只对半轻衰变Ds+→η(’)e+ve的分支比做了测量,精度不高。因此,首次测量半轻衰变Ds+→η(’)e+ve动力学性质是很及时的,我们利用不同的参数化方法测量了形状因子f+Ds+→η(’)(0)与CKM矩阵元|Vcs|的乘积。对于两个参数的级数展开模型,结果分别是f+η(0)|Vcs|=0.4455±0.0053stat 士 0.0044syst,f+η’(0)|Vcs丨=0.477±0.049stat±0.011syst。我们利用双标记的方法测量了Ds+→η(’)e+ve的分支比,分别是BDs+→ηe+ve=(2.323±0.063stat±0.063syst)%,BDs+→η’e+v)e=(0.824±0.073stat±0.027syst)%。它们的精度比世界平均结果提升了 2倍。利用BESIII测得的BD+→(’)e+ve求得混合角φP=(40.1 士 2.1stat±0.7syst)°。在粒子衰变动力学的研究中,纯轻衰变对于理论来说是最简单的形式。由于螺旋度压低,赝标量介子P的纯轻衰变P→e+ve的衰变率要小得多。辐射一个光子却可以克服这种压低,这是因为光子本身具有自旋,使得衰变前后自旋守恒。这样纯轻辐射衰变P→γe+ve的衰变率比P→e+ve高出103一105倍。理论预言D(s)+→ γe+ve的分支比在10-5到10-3之间。在BESIII上寻找这些过程,可以帮助理解这个基本过程的动力学,并探究新物理的存在。2016年BESIII实验利用质心能量为(?)=3.773 GeV的数据寻找了D+→γe+ve的辐射纯轻衰变,没有发现明显的信号。在90%置信度下,得到基于Eγ>0.01 GeV的部分分支比的上限BD+→-γe+ve<3.0 × 10-5。相比于D+→ γe+ve的Cabibbo压低衰变,Ds+→γe+ve是Cabibbo允许过程,光前(light-front)理论与非相对论成分夸克模型(non-relativity constituent quark model)预言其分支比为 10-5 到 10-4。此外有理论认为在长程作用的贡献下其分支比会达到10-4。还有一些结合了重夸克有效理论的围绕量子色动力学预言其分支比达到10-3。这些理论都是基于粒子标准模型做出的,如果实验得到的分支比偏离以上结果,就有可能存在新物理的贡献。利用BESⅢ的数据,我们没有观测到Ds+→γe+ve的信号。在90%的置信度下,基于Eγ>0.01 GeV给出了部分分支比上限BDs+→γe+ve<1.3 × 10-4。