论文部分内容阅读
线粒体内约有1000-1500种蛋白质,这些蛋白质在细胞的能量转化、代谢、脂质生物发生、信号传导和程序性死亡等过程中起到了重要作用。99%的线粒体蛋白由核基因组编码并在细胞质中翻译,随后被正确转运到线粒体四个不同亚区室中。线粒体中有七个主要的蛋白转位酶复合物负责蛋白前体的运输和装配。TOM复合物是将蛋白前体从细胞质中转移到其他线粒体转位酶复合物的主要入口。TOM复合物由形成通道的β-桶蛋白Tom40和六个其他亚基组成,其中包括受体蛋白Tom20、Tom22、Tom70和三个调节性的小Tom蛋白(Tom5、Tom6、Tom7),这六个亚基均为单个α跨膜螺旋蛋白。除去两个受体蛋白Tom20、Tom70,剩下的五个亚基构成了稳定的TOM核心复合物。TOM核心复合物是由α跨膜螺旋蛋白和β-桶膜蛋白组装成一个功能正确的复合物,其组装的机理仍然有待进一步研究。在酵母中,通过电子显微镜观察和交联实验分析发现TOM复合物可以形成两个或三个孔,分别对应于二聚体TOM复合物和三聚体TOM复合物。研究表明,二聚体和三聚体之间存在动态转换,这说明TOM复合物在蛋白前体跨外膜转运的各个阶段可能经历结构的重排。每个孔可以相互调节以独立或协同完成蛋白前体的转运,从而适应共翻译导入和高效的导入。在人类中,TOM复合物与某些线粒体疾病相关,例如帕金森综合征。在受损的线粒体中,PINK1会在TOM复合物上积累,然后招募并激活Parkin蛋白激活线粒体自噬。如若未能及时清除异常的线粒体可能会导致早发性帕金森病。研究人员推测PINK1是被TOM复合物横向释放进入外膜。因此,揭示人源二聚体和三聚体TOM复合物的装配机理不仅可以揭示TOM复合物转运蛋白机理,而且还可以为人类线粒体疾病的治疗奠定基础。我们利用冷冻电镜的方法解析了 3.0 A人源二聚体TOM核心复合物的结构,获得了 4.3 A三聚体TOM复合物的构象。人源二聚体TOM核心复合物整体结构形成两个对称的孔,包含两份的Tom40、Tom22和小Tom蛋白。因为Tom70、Tom20与TOM核心复合物亲和力较低,我们未能得到包含两个受体蛋白的TOM全复合物结构。结构显示Tom40的β1和β19被埋藏于二聚体界面,并被Tom22稳定,使得Tom40很难侧向打开。在结构中观察到11个脂质样密度,我们推测这些磷脂参与了 TOM复合物中α螺旋和β折叠的组装。基于结构,我们可以更好地理解人源TOM复合物的结构基础和转运分子机理。同时,我们分析了低分辨率的三聚体TOM复合物结构,提出了一种可能的二聚体-三聚体的转换模型,该模型与原子力显微镜和光交联质谱研究一致,表明TOM复合物能够以不同的聚合形式存在于细胞中,这将有助于不同类型蛋白前体的运输。为了验证三聚体TOM复合物存在于人线粒体上,我们利用交联实验进行验证,结果证实我们所观测的三聚体TCM复合物是正确的。相对于二聚体TOM核心复合物,在三聚体TOM复合物中发生了 Tom40的结构重排,从而使得其中一个Tom40的β链的打开成为可能。我们推测三聚体TOM复合物可能适用于Tom40的横向释放。总的来说,我们的数据揭示了人源二聚体TOM核心复合物的高分辨率结构和人源三聚体TOM复合物近原子分辨率结构。通过结构分析和生化验证,为理解人TOM复合物的分子转运机理提供了结构基础。我们阐明了脂质是如何连接α螺旋和β折叠。此外,我们在线粒体水平上进行交联实验,提供了人线粒体中存在三聚体TOM复合物的生化证据,这表明人TOM复合物以不同的低聚物状态存在于细胞中,以促进底物转运。例如在去极化的线粒体中,三聚体TOM可能将类似于PINK1的底物横向释放到线粒体外膜并聚集在外膜。然而,获得更高分辨率的人源三聚体TOM复合物从而解释其他TOM组分在三聚体组装中的作用仍然是前所未有的挑战。另外,获得结合有蛋白前体的TOM复合物的精细结构对于充分理解线粒体外膜蛋白易位机理非常有帮助。