论文部分内容阅读
在现有研究中国农产品产量的预测中,将基于ARIMA模型、灰色预测模型、OPT准则下模型平均等预测方法应用于中国各种农产品产量的预测中,都取得了较好的预测效果。为提高中国农产品产量的预测水平,比较基于不同模型预测方法的中国农产品产量的预测误差有着重要的意义。本文对中国农产品产量的预测进行了实证研究。通过基于ARIMA模型、灰色预测模型、OPT准则下的模型平均三种预测方法,先对中国粮食总产量进行未来三年的短期预测及未来九年的中长期预测,并比较粮食总产量在不同模型预测方法下的短期预测误差和中长期预测误差。同时,通过预测粮食的具体农产品—玉米的农产量,进一步分析玉米农产量在三种预测方法下的短期及中长期预测效果,判断预测效果是否一致。实证结果分析表明:对于中国粮食总产量的中长期预测与短期预测,OPT准则下模型平均方法的预测效果最好,而ARIMA模型中长期预测与短期预测的平均相对误差均小于灰色预测模型。在玉米农产量的短期预测中,灰色预测与OPT准则下模型平均方法预测的平均相对误差较小,且OPT准则下模型平均方法的预测效果要好于灰色预测,ARIMA模型对于玉米农产量的预测效果最差。通过对玉米农产量的中长期预测发现,三种预测方法的预测效果均较差,但OPT准则下模型平均方法的预测误差低于灰色预测和ARIMA模型预测。因此,粮食总产量和玉米农产量短期和中长期的最优预测模型相对一致,预测效果却并不一致。