基于亚奈奎斯特采样的宽带频谱感知技术研究与实现

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:lhy_287229489
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着无线电技术的迅猛发展,无线频谱资源愈加稀缺,为了提高频谱利用率,对宽带频谱进行监测、高效管理在雷达、认知无线电(Cognitive Radios,CR)领域都有着重要意义。依赖奈奎斯特定理的传统采样方式在模数转换器(Analog to Digital Converter,ADC)无法满足高速率采样时显得捉襟见肘,因此压缩感知理论(Compressed Sensing,CS)应运而生,随着CS技术的成熟,使得基于亚奈奎斯特采样的数字接收机成为可能,与传统采样后压缩不同,该技术不仅降低了对ADC的要求,还减轻了系统对数据的存储、传输的负担。本文围绕基于亚奈奎斯特采样的宽带频谱感知系统的设计与实现,通过分析以CS理论为基础的亚奈奎斯特采样技术及信号重构算法,对多陪集采样架构进行研究,并提出一种改进型采样架构与一种基于互周期图的快速功率谱重构算法,给出了宽带频谱感知系统的总体设计方案,并基于FPGA(Field Programmable Gate Array,FPGA)平台完成系统实现。本文的主要研究工作包括:1、介绍了三种典型亚奈奎斯特采样技术:随机解调采样(Random Demodulator Sampling,RDS)、调制宽带转换器(Modulated Wideband Converter,MWC)、多陪集采样(Multi-Coset Sampling,MCS),通过对信号模型、重构运算量、硬件实现技术难点以及相应的带宽要求等多个方面分析、比较;其次对传统贪婪算法、凸松弛算法、稀疏贝叶斯算法等进行分析,通过仿真实验分析OMP(Orthogonal Matching Pursuit)等算法的压缩数据重构性能。2、针对传统MCS结构不够灵活或对时钟设计要求过高的问题,对采样结构进行优化,并提出一种最优采样模式搜索的设计方案;分析MCS采样后数据与原始频谱关系,提出一种基于互周期图的快速功率谱重构算法,进一步提高了宽带功率谱感知性能。3、依据改进后MCS架构以及功率谱估计算法,对宽带频谱感知系统进行设计和实现。通过系统需求及电路分析,完成了电源模块、采样模块、信号处理模块、DSP(Digital Signal Processor,DSP)模块及其接口电路的实现,完成六路160MHz的ADC对直流(Direct Current,DC)到1GHz带宽内的频谱感知系统实现,并在现有实验室条件下完成系统硬件平台的性能测试。
其他文献
日益增长的网络规模对网络的故障探测和定位提出了更高的要求,网络测量是发现网络故障的重要手段。主动测量由于具有灵活性和隐私性在网络故障检测中被广泛运用,但主动测量的方法会向网络中引入额外的探测流量。本研究的测量对象是网络中的链路级故障。为了探测到所有链路故障,最常见的设计是对链路进行全覆盖的测量,这无疑会引入大量的探测流量。而在任何的典型场景中,故障链路的数量都只是网络中的一小部分。理想的设计目标是
数据中心光互联是光纤通信行业在短距离传输的重要业务与关注点,与相干光传输系统为代表的长距离传输光纤通信系统不同,数据中心光互联为代表的短距离传输系统考虑到成本、功耗与复杂性的问题,更加倾向于低成本、高速率的光纤传输系统。本文以数据中心之间光互联为应用背景,研究内容分为两大部分,第一部分研究了单偏振直接探测系统的光场恢复技术,第二部分研究了偏振复用直接探测系统的偏振解复用技术。针对系统结构、传输效率
随着行业的快速发展,手机等无线电子产品的结构越来越复杂,通过设计达到通信标准的难度也进一步增大。在复杂系统中,原来被视为线性器件的可调谐电容和导电泡棉等射频前端器件的非线性在辐射杂散干扰测试中变得越来越显著,逐渐进入科研工作者视野并成为制约电路系统性能的关键所在。因此,为了缩短研发周期和减少研发成本,我们迫切需要针对射频前端,特别是杂散滤波电路之后的可调谐电容和导电泡棉的非线性建立等效的行为级模型
毒品浓度的检测是临床和法医鉴定中的一项重要任务,旨在通过各种检测方法确定待定样本中毒品的含量。随着社会的发展,对毒品系统的要求不仅仅停留在定性检测,而是要求毒品系统能够实现快速、稳定、便携的毒品定量检测。上转发光材料通过光子的激发能够将低能量的荧光转换成高能量的荧光,具有荧光寿命长、发射峰窄、毒性低、抗斯托克斯频移和抗生物自发荧光的优势。因此,本文从已有上转发光材料出发设计并且制作了吗啡检测系统,
高速移动接入、增强现实(AR)、虚拟现实(VR)、超大规模物联网等计算密集型应用的发展,对网络时延、接入带宽、计算力等方面提出了更高的要求。传统移动云计算(Mobile Cloud Computing,MCC)将计算任务卸载到远端数据中心,整个任务的处理时延难以得到保证,因此移动边缘计算(Mobile Edge Computing,MEC)应运而生。MEC技术将服务器部署在更加接近用户的移动网络边
随着大数据时代的发展,张量为多维数据提供了一种有效的数学表示。为了提取隐藏的结构或模式,张量分解作为一种常见的秩揭示代数出现了,它将张量分解成几个小的(通常是可解释的)张量。给定张量的一部分作为观测样本,张量补全通过利用多维数组的低秩结构对缺失的成分进行插值。最近提出的张量环分解是一种量子启发方法,它在低级计算机视觉问题的任务中表现出比现有方法更好的性能。本文将说明通过求解基于此张量环分解的凸优化
合成孔径雷达作为雷达技术发展的一个重要里程碑,它不仅具有普通雷达全天候、全天时、远距离等特点,而且还能根据回波特性,解析出真实场景。然而,伴随着“图像”二字的往往是较高的数据量。较高的数据量,同时也对雷达实时成像系统的处理能力带来了较高的要求。本文以太赫兹SAR系统中的实时成像系统方案的设计与实施为主要研究方向,实现了一套以RD与PFA成像算法为基础的基于ZYNQ-7020平台的SAR实时成像系统
分子通信(molecular communication,MC)通常定义为一种微观尺度下,基于生物或化学分子作为载体,完成生物细胞或纳米机间的信息传递的通信技术。目前,分子通信研究工作的主要障碍包括传输效率低、误码率高等方面,而传统通信中的多入多出(multiple-input multiple-output,MIMO)技术能够显著提高链路性能。因此,应用MIMO技术于分子通信已经成为该领域亟需研
无线电频谱资源作为国家战略性资源,在民用、军事等领域都起到了至关重要的作用,国内外都非常重视对频谱资源的管理。对频谱异常状态的检测是频谱资源管理监测的重要内容之一。传统的方法通过有监督的算法建立检测模型,可检测到的异常信号种类单一。由于实际场景下,信号发生异常的概率相对较小且原因众多,现有的模型方法无法适应。因此,本论文基于无监督的思想,结合人工智能的方法,对恶意电磁干扰、出现未授权信号、授权信号
现有雷达接收机参数固定、自动化程度低,不能适用于不同的工作模式,严重制约了雷达系统的处理能力,也不满足多功能综合一体化雷达系统的要求,针对于此,本文对可重构的雷达数字接收机展开研究,以便能在一个通用的平台上通过软硬件编程的方式实现不同雷达信号的接收。本文主要从两个方面展开研究工作,一方面是在研究可重构技术的国内外发展和应用情况的基础上,选择了Xilinx公司设计的全可编程片上系统芯片——Zynq,