论文部分内容阅读
由于传统燃油汽车会造成严重的环境污染和能源危机,而电动汽车在环保和节能方面有着燃油汽车不可比拟的优势,其中,四轮独立驱动电动汽车各个车轮的运动状态独立可控,易于实现更加复杂的控制,因此逐渐成为当今研究的热点。由于四轮独立驱动电动汽车各个车轮之间无硬性机械连接,而且其驱/制动力矩独立可控,所以具有更多的可控自由度,这给车辆的稳定性协调控制带来了巨大的挑战。同时,随着执行器数量的增加,其出现故障的概率也明显增加,所以其安全控制问题成为汽车领域关注的热点。本文针对电动汽车的稳定性协调控制和驱动失效问题,分别利用博弈理论和模型预测控制理论,围绕电动汽车的侧向稳定控制和驱动失效容错控制进行了一系列研究,其中主要研究工作包括以下几点:(1)四轮独立驱动电动汽车系统动力学建模。以CarSim中传统车B-Class Car为原型车进行电动汽车改造,通过CarSim和MATLAB/Simulink软件联合的方式建立具有线控制/驱动和转向的电动汽车的整车模型,并对所建立的模型进行仿真验证;(2)基于非合作博弈理论的侧向稳定性控制研究。针对四轮独立驱动电动汽车的过驱动结构,提出了一种基于非合作博弈的分层式控制结构,其分为上下两层。其中上层控制器分别基于Nash和Stackelberg博弈理论进行稳定性控制策略的设计,并基于控制策略得到相应的控制行为。下层控制器利用拉格朗日乘子优化算法将上层控制器的虚拟控制量(附加横摆力矩)进行优化分配;(3)基于合作博弈理论的侧向稳定性控制研究。采用相似的双层式分层控制结构,其中上层控制器基于合作博弈理论进行稳定性控制策略的设计,并基于该策略得到相应的虚拟控制行为。在下层控制器中采用序列二次规划(SQP)优化分配算法将上层控制策略的虚拟控制行为(附加横摆力矩)分配到各车轮执行器;(4)基于模型预测(MPC)的驱动容错控制研究。首先建立面向MPC的包含横向、纵向、横摆运动的三自由度车辆动力学控制模型。然后,以减小车辆的质心侧偏角和横摆角速度偏差为目标设计成本函数,并对控制器输出建立约束条件。同时,在车辆发生故障后对车辆控制结构进行重构化表达,并利用所建立的重构预测模型对车辆的未来运行状态和输出进行估计。最后,利用二次规划优化算法对所建立的多约束优化问题进行滚动时域求解。最后通过CarSim和MATLAB/Simulink联合仿真,对所设计控制策略的有效性进行验证。研究结果表明,基于非合作和合作博弈所设计的车辆稳定性控制策略能够在极限工况下将车辆控制在相对稳定的状态。其中,在高速低附着的双移线工况下,相对于经典的LQR控制,合作博弈控制将车辆的质心侧偏角峰值减小了63.1%。同时,基于MPC所设计的容错控制器能够在车辆左前轮失效的工况下,通过功能冗余的健康转向和驱/制动系统将车辆控制在安全的状态。