论文部分内容阅读
典型群及其特殊子群是代数学的重要研究对象。本文主要研究局部环上典型群的BN-对,二面体群的BN-对和不变式环,有限域上典型群的极大子群和根子群的有理不变式域的结构。第一章考虑任意局部环上典型群的BN-对问题,构造了局部环上一般线性群、辛群、正交群的BN-对,并且证明了局部环上一般线性群与对应的BN-对之间满足群交换图关系。第二章研究群环R上酉群的结构及其应用。首先确定群环R上Hermitian矩阵的合同标准型。其次,讨论R上酉群的BN-对和计数问题。最后,作为应用构造了一个Cartesian认证码,并计算了相应码的参数。第三章讨论一类重要的有限反射群-二面体群Dn的BN-对和Building。并且,在不变式环方面证明一个有趣的结论:当n=3m,m∈Z+时,Dn的BN-对中的子群B的不变式环是Dn的不变式环的一个整扩张,并且R2作为R1-自由模的基底的个数等于[Dn:B],从而刻划了群和对应的不变式环之间的数值关系。第四章在有限典型群的极大子群和根子群的有理不变式域方面做了一些讨论。通过构造有理不变式域的超越基,从而回答了有限典型群的G1和G2类极大子群及其根子群Noether问题。另外,证明有限域上一般线性群的C1类极大子群和特殊线性群的根子群的不变式环是多项式的。