论文部分内容阅读
细胞是生物体的最小结构单元,细胞膜则是细胞最重要的组成部分之一。细胞膜由双亲性磷脂分子、胆固醇以及膜蛋白等组成,这种特殊的膜结构在细胞活动中发挥着重要作用,如在信号传导和物质运输等过程。在真实的生物体系中,细胞膜的作用机理非常复杂,在时间和空间上尺度有很大跨度,以至于现有的实验条件和技术水平很难确定细胞膜的作用机理。近些年,随着计算机水平的发展和生物模型的不断优化,使用计算机模拟生物体系的研究成为热点。本文主要采用分子动力学模拟方法,以磷脂膜、多肽、抗菌分子和膜蛋白为研究对象对细胞膜进行了研究。主要研究内容为以下两个方面:1.磷脂膜与抗菌肽、抗菌分子之间的相互作用。研究包括:抗菌肽在水中和磷脂膜表面的结构变化,细胞环境对抗菌肽形成膜孔的影响,以及抗菌分子对磷脂尾链的扰动及对膜结构的破坏。(a)采用全原子分子动力学模拟方法研究爪蛙素抗菌肽和CM15抗菌肽的结构变化在磷脂膜表面的成孔机理,从而实现穿膜。模拟发现CM15抗菌肽在水中会两两聚集,同时螺旋结构解螺旋为折叠结构。爪蛙素抗菌肽在水中和膜表面都会聚集。在水中时爪蛙素抗菌肽会解螺旋成无序结构,在膜表面时会先解螺旋成无序结构再转变为折叠结构。在单膜模型中加入外加电场时,抗菌肽更加容易的在膜上成孔,电场强度越大越容易形成膜孔。在双膜模型加入离子对形成跨膜电势后,抗菌肽的存在也会增加跨膜电势,所以抗菌肽在外加离子对的情况下也是更容易形成膜孔。这一结论证明了细胞环境以及抗菌肽结构对于其形成膜孔都有重要影响。(b)采用全原子分子动力学模拟方法研究抗菌分子对磷脂膜的扰动。将主体为吡咯二吡咯和季胺化结构的抗菌分子分别以水平和垂直方式放置到膜中心。抗菌分子在膜中心会以两种形式保持稳定结构,分别为跨膜结构和U型结构。抗菌分子形成跨膜结构之后会影响磷脂膜厚度,链长为6和8个碳原子的抗菌分子使膜变薄。跨膜结构的抗菌分子还会使磷脂尾链的有序度降低,破坏膜结构。由于季胺化结构氮原子带正电荷,还会与POPG磷脂头基相互作用,影响磷脂分布。模拟结果可以为以后设计抗菌分子提供指导。2.磷脂膜分相现象研究。主要研究多组分磷脂膜的相分离机理,以及膜蛋白对磷脂分相的影响。通过模拟发现磷脂分相主要由两个条件控制,分别为磷脂尾链的不饱和度以及磷脂尾链相对长度。当磷脂尾链不饱和程度差异较大时,磷脂会自发的分相为由饱和磷脂与胆固醇形成的有序相以及不饱和磷脂形成的无序相,而且随着胆固醇浓度的增高,分相程度也越高。当饱和磷脂尾链与不饱和磷脂尾链长度差异较大时会形成错位式分相,差异较小时则会形成对位式分相。由于有序区域排列紧密而无序区域排列稀疏,所以膜蛋白会分布在无序相中。而且膜蛋白的存在会影响分相结构,从而使其周围由错位式分相变化为对位式分相。