论文部分内容阅读
随着船舶的日趋大型化以及高强度钢在船体结构中的广泛采用,船体结构的疲劳强度评估显得越来越重要。目前,船舶结构的疲劳校核大多数是基于S-N曲线的方法。它假设材料是无缺陷的连续体,而实际材料中总是存在着裂纹或类裂纹的缺陷,因此将疲劳裂纹扩展理论应用于疲劳寿命预测已成为研究疲劳问题的发展方向。潜艇在服役过程中频繁的上浮与下潜,结构产生的不断变化的交变应力容易使得表面产生裂纹。现代战争中,舰船不可避免地会受到来自水中的非接触爆炸冲击波的作用,在冲击载荷的作用下,结构极易从裂纹处发生突然脆性断裂,造成巨大的人员伤亡和财产损失,因此研究带有表面裂纹潜艇结构在冲击载荷作用下的动态断裂已成为非常紧迫的任务。本文拟在疲劳裂纹扩展理论的基础上对船舶结构疲劳寿命展开系统的研究,希望能为将疲劳裂纹扩展理论纳入船舶结构疲劳强度校核规范之中提供参考。本文主要研究工作如下:(1)基于疲劳裂纹扩展理论,在有限元应力计算结果的基础上,运用MSC.Fatigue软件中Growth模块,对一散货船外底纵骨与横舱壁和横框架连接节点处进行系统的疲劳寿命分析,并探讨了不同的裂纹形状比对疲劳寿命的影响,最后初步探讨了底部砰击载荷对疲劳寿命的影响。(2)运用有限元分析软件ANSYS建立带有表面裂纹的锥柱结合壳模型,以断裂动力学为理论基础,分别研究了潜艇不同下潜深度,不同爆心到潜艇的距离R及不同爆点与潜艇相对位置的冲击波载荷作用下的动态应力强度因子(DSIF),分析动态应力强度因子最大值随冲击因子的变化规律,然后以921A钢为例对该冲击载荷作用下潜艇锥柱结构是否发生失稳断裂作初步判断。通过本文的研究得出的结论如下:(1)随着载荷循环次数的增长,裂纹扩展速率逐渐加快,在裂纹扩展的初期阶段速率较低,其扩展寿命占据了整个寿命的大部分;焊趾在横舱壁处的疲劳寿命比横框架处的寿命长,纵骨上软趾处疲劳寿命要比通焊孔焊缝趾端处的疲劳寿命短;(2)不同的裂纹形状比对疲劳寿命的影响很大,相同的初始裂纹尺寸,随着a/c的增大,疲劳寿命增加;(3)考虑砰击载荷对疲劳寿命的影响很大,因此在船体结构疲劳寿命分析中应计入砰击载荷的影响。(4)对于相同下潜深度和相同冲击载荷作用方式,不同爆心到船壳距离R,动态应力强度因子的振荡形式是相似的,而且随着爆心距离船壳越近,裂纹尖端处的动态应力强度因子越大。(5)动态应力强度因子最大值随着冲击因子的增大而增大,近似为线性关系,不同下潜深度,相同的冲击波载荷,相同的作用方式,下潜越深裂纹尖端处的动态应力强度因子最大值越大。(6)对于相同下潜深度,冲击载荷作用于轴向比作用于周向的振荡更剧烈,幅度更大而且趋于稳定需要的时间长,对结构的影响也更大,随着冲击因子的增大,不同冲击载荷作用方式下的最大动态应力强度因子差值也逐渐变大。(7)对于921A潜艇用钢在静水压力作用下,正常服役的过程中不会发生突然脆性断裂,而在冲击载荷作用下,下潜100m且R=50m、100m和下潜300m时可以初步判断该结构会发生失稳断裂。