【摘 要】
:
4-喹诺酮是具有良好的生物活性含氮杂环化合物,在许多天然活性产物和生物医药中广泛存在,并且广泛应用于传染病、肿瘤、疟疾及艾滋病等疾病的治疗。而均相金催作为有机合成中
论文部分内容阅读
4-喹诺酮是具有良好的生物活性含氮杂环化合物,在许多天然活性产物和生物医药中广泛存在,并且广泛应用于传染病、肿瘤、疟疾及艾滋病等疾病的治疗。而均相金催作为有机合成中较为方便快捷的一步得到复杂多样性分子的方法,却极少被应用于合成多取代4-喹诺酮。因此,本论文通过金催化叠氮芳基炔丙醇底物发生环化反应以及催化过程中α-亚胺金卡宾引发的迁移反应,得到一系列的多取代4-喹诺酮。具体的研究内容主要包括以下三个方面:(1)为实现金催化叠氮芳基炔丙醇底物的环化反应。通过对溶剂、反应温度、金催化剂及其负载量等影响因素进行筛选,确定了最佳的反应条件。(2)在最佳反应条件下,通过改变底物不同位置的取代基,探究该反应底物的普适性,以中上的产率得到26种不同的多取代4-喹诺酮。并且所得产物结构均经过1H NMR、13C NMR、19F NMR以及HRMS等表征分析,确认正确。(3)对该反应的合成应用进行探索。首先对反应进行放大至1 mmol级,产率保持的很好;然后将反应应用到1,2-庚基-4-喹诺酮、1,3-二甲基-2-苯基-4-喹诺酮以及4-甲氧基-3-甲基-2-苯基喹啉的合成,以中上产率获得产物,这些生物活性物质的获得说明该反应一定的应用潜力。
其他文献
甲烷氧化偶联(OCM)直接制C2(乙烯,乙烷)是一项富有前景的甲烷利用技术,但该反应通常需要在>700℃的高温下进行。高反应温度不但浪费了大量能量而且加剧了产物的深度氧化,因此
分数阶微积分有着300多年的历史,作为整数阶微积分的推广,有较强的物理背景.分数阶导数能更有效的描述物质和过程的记忆和遗传性质,由此分数阶微积分在物理、化学、工程、生物、金融等领域的应用变得更加广泛.本文对两类由分数布朗运动驱动的随机发展方程进行研究,研究了该类方程的-渐近-周期解的相关性质.第一部分研究的是由分数布朗运动驱动的一阶非自治随机发展方程,主要运用发展族理论、Gronwall不等式和B
孔雀石绿对预防鱼的鳃霉病、水霉病、小瓜虫病等有奇效,同时可延长鳞部受损的鱼的生命,因此孔雀石绿违禁使用屡禁不止。研究表明,孔雀石绿在鱼体内残留时间很长,具有高毒性、
天然聚合物由于具有来源广泛,安全无毒,生物相容性高,易于降解等优点,已经被设计改性应用于食品产品,药物传递,化妆品等领域。对天然聚合物进行改性可以赋予其更多的功能,满
维氏硬度大于40 GPa的材料被定义为超硬材料,具有高硬度、强耐磨性和强化学稳定性等优异性能,在工业加工、国防建设、仪器制造等领域具有不可替代的作用。已广泛应用的典型超硬材料有金刚石和立方氮化硼均存在一些缺陷,如金刚石的热稳定性较差,且易与铁基金属反应;立方氮化硼高温下易与水发生反应。研制新型超硬材料具有重要的应用价值和科学意义。B_4C是硬度仅次于超硬材料的硬质陶瓷材料,且具有低密度、耐酸碱和磨
Q油田原油含蜡量高,储层渗透率低,非均质性强,其顶部发现高含CO2的天然气源,且气源中含有大量CH4和N2。这类油藏如果注入高含CO2气进行驱油,原油混相压力较高,实现混相难度较
在下铸浇注过程中流场分布不均,会导致大量气体被卷入到浇道内,钢液对浇道过度冲刷和侵蚀,铸模内钢水喷溅,卷渣等,从而增加铸坯气孔缺陷、外生夹杂物和二次氧化等的风险,降低
石墨烯是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体,因其优异的光学、电学和力学等性能而被认为是一种革命性的材料,在材料科学、微纳米加工和能源等
为了提升镁合金的耐蚀性能,本课题组创新性地采用多道次搅拌摩擦加工的方法在AZ31B镁合金表面覆合了一层1060铝合金,制备出了耐蚀性能优良,界面结合良好的镁基铝覆层复合材料。本文在此基础上,采用金相显微镜、显微硬度仪、扫描电子显微镜和透射电子显微镜等实验手段,研究了在特定工艺参数下搅拌摩擦加工后相邻道次之间轴肩作用区铝/镁结合界面过渡层的组织结构。研究结果表明:搅拌摩擦加工制备的镁基铝覆层复合材料
颗粒增强复合材料随着工业的发展得到了越来越多的关注,超声振动切削作为一种精密加工技术也有了很成熟的发展,目前关于颗粒增强金属基复合材料在超声振动车削加工过程中产生的切削热及其切削温度分布的研究较少。因此,本研究借助大型有限元仿真软件ABAQUS对颗粒增强复合材料的车削细观模型进行了理论和仿真模拟,并进行了辅助测温试验研究。建立了颗粒增强复合材料振动切削车削温度场理论模型,该模型可以近似求解出超声振