论文部分内容阅读
随着移动互联网以及物联网的飞速发展,越来越多的终端设备以及新型应用(如增强现实、人脸识别和交互式游戏等)出现在人们的日常生活中。这些新型应用通常具有计算密集型和时延敏感型的特点,对终端设备的计算和存储等能力提出了较高的要求。移动边缘计算(Mobile Edge Computing,MEC)的出现很好地解决了终端设备计算和存储能力不足等问题。用户设备可以将自身难以处理的复杂计算任务卸载到移动网络边缘的MEC服务器,并利用其丰富的计算和存储资源进行任务处理,有效地提升用户的体验质量。MEC在带来诸多优势的同时,也存在着如何根据有限的计算资源(用于任务处理)和无线资源(用于任务传输)来制定合理高效的计算卸载机制,以及MEC服务器中由于卸载任务量的分布不均所带来的负载均衡问题。对此,本文针对MEC网络中的计算卸载和负载均衡算法展开研究,具体内容如下:1.针对单小区-多用户MEC场景下的计算卸载问题,综合考虑用户任务卸载决策以及有限的无线和计算资源对计算卸载的影响,提出了任务卸载决策及资源分配的联合优化问题。首先,采用自适应遗传算法制定卸载决策及后续的更新操作。具体地,在每一次卸载决策更新的情况下,将原问题分解为功率分配和计算资源分配两个子问题;然后,根据凸优化及准凸优化理论,利用二分搜索法和拉格朗日乘子法分别求出功率分配和计算资源分配的最优解。仿真结果表明,所提出的方案在保证用户时延约束的同时,降低了用户总开销,有效地提升了系统的性能及用户体验质量。2.针对密集异构网络MEC场景下的计算卸载问题,考虑不同小小区间的同信道干扰对计算卸载的性能影响,提出了卸载决策和资源分配的联合优化问题。首先,采用混沌变异二进制粒子群算法优化用户的卸载决策,并在特定卸载决策下,采用拉格朗日乘子法对用户进行计算资源分配;然后,在满足用户最低传输速率和最大可容忍干扰的条件下采用改进的Kuhn-Munkre算法来对卸载用户进行子信道分配。仿真结果表明,所提出的方案相比于其他方案能够节省更多的开销,有效地提升系统性能。3.针对未来密集部署MEC服务器负载均衡问题,考虑了由于在不同时间内网络中的卸载任务量的变化情况,选择对MEC服务器进行休眠操作,以节省不必要的能量消耗。首先采用M/M/m多服务台排队理论对网络中的卸载任务量进行建模,然后根据网络中的卸载任务量利用集合均值迭代比较算法筛选出具有较少卸载任务量的MEC服务器集合,并对该集合内的MEC服务器进行逐一判断,进行休眠操作。仿真结果表明,所提方案能够明显地降低系统的能耗。