【摘 要】
:
狂犬病(Rabies)是由高度嗜神经性的狂犬病病毒(Rabies virus,RABV)引起的烈性人兽共患病。狂犬病的病死率高达100%,是世界性危害严重的高危疾病,特别是在亚洲和非洲的发展中国家和地区。至今仍没有有效治疗狂犬病的方法,但可通过疫苗免疫达到较好暴露前预防和暴露后治疗。虽然RABV研究历史很长,但对于狂犬病具体的发病机制尚不清楚,并且机体对于致病株感染和弱毒株感染表现着较大的差异,对
【基金项目】
:
广东省科技计划项目(2014A020214006、2015A020209100); 广东省自然科学基金(2018A030313163);
论文部分内容阅读
狂犬病(Rabies)是由高度嗜神经性的狂犬病病毒(Rabies virus,RABV)引起的烈性人兽共患病。狂犬病的病死率高达100%,是世界性危害严重的高危疾病,特别是在亚洲和非洲的发展中国家和地区。至今仍没有有效治疗狂犬病的方法,但可通过疫苗免疫达到较好暴露前预防和暴露后治疗。虽然RABV研究历史很长,但对于狂犬病具体的发病机制尚不清楚,并且机体对于致病株感染和弱毒株感染表现着较大的差异,对于这些差异也未彻底地了解。现有的研究表明,相较于强毒株,弱毒株感染能更快地激活宿主机体的固有免疫应答,且能提高血脑屏障的通透性,使免疫细胞和某些免疫大分子通过进入中枢神经系统(Central nervous system,CNS)清除病毒。而在CNS中,不同毒株感染激活IFN-I通路的差异有哪些?不同毒株感染后在CNS中的分布又是怎样的?基于这些问题,本研究以弱毒疫苗株Hep-Flury基因组作为骨架,将其G基因替换成CVS-11的G基因,所得的重组病毒Hep G,加上亲本株Hep-Flury和标准强毒株CVS-11分别以同样的病毒量滴鼻感染小鼠,通过冰冻切片免疫荧光技术和实时荧光定量PCR(Real-time quantitative PCR,RT-q PCR)技术检测各毒株感染后不同时间点鼠脑中各部位IFN-I通路相关基因的激活表达差异以及病毒含量分布的差异。实验结果发现,滴鼻感染后,疫苗弱毒株Hep-Flury在感染前期到后期并未发现大量的病毒入侵到CNS,致病毒株Hep G和CVS-11在感染第4天即可入侵到CNS,中期在CNS中大量复制,后期病毒量趋于稳定,并且以大脑皮层和海马区为主要的复制部位。滴鼻感染小鼠后,病毒从嗅神经最先到达大脑皮层,并逐渐从皮层扩散到海马、下丘脑、丘脑和小脑等区域。相对于致病毒株,弱毒感染后能更早地激活大脑皮层IFN-I通路相关因子表达,且更有效地抑制病毒复制。弱毒株和致病株在感染中后期都能较大幅度地提高IFN-I通路相关因子的表达,但致病毒株的病毒载量却大大高于弱毒株,提示IFN-I通路的激活难以抑制CNS中致病株的复制。较为特殊的是,相对于CNS其他部位,弱毒株感染第7天在丘脑部位引起的IFN-I相关因子表达增加的水平普遍高于致病毒株CVS-11和Hep G,且弱毒株在感染第10天最早在丘脑区出现病毒载量下降的趋势。以上结果提示大脑皮层是RABV入侵CNS的重要门户,若在此病毒受到固有免疫分子的有效抑制可大大拖延病毒在CNS的增殖和扩散。丘脑区和下丘脑区则是CNS开始清除弱毒株的重要区域。在这两个关键位置是哪些重要免疫因子发挥作用尚需进一步研究。本研究为深入挖掘CNS中抗RABV靶标提供了重要理论依据。
其他文献
猪瘟(Classical swine fever,CSF)是由猪瘟病毒(Classical swine fever virus,CSFV)感染猪引起的一种急性、热性、高度接触性传染病,1992年被世界动物卫生组织(Office international des epizooties,OIE)列为A类传染病,给养猪业造成极大损失。目前,我国防控CSF的主要措施是接种猪瘟兔化弱毒苗,猪瘟兔化弱毒疫苗
母猪子宫内膜炎是猪场常见的产科疾病,主要是由一些病原微生物侵入或者烈性传染病继发感染引起的母猪子宫黏膜表层或深层的炎症,从而导致母猪的繁殖障碍,对现在很多规模化猪场造成严重的经济损失。多西环素是一种广谱抗生素,属于四环素类药物,广泛用于革兰氏阳性菌、革兰氏阴性菌和支原体等引起的感染治疗中,目前,多西环素在我国已广泛用于畜禽细菌性疾病的防治与治疗,尤其在治疗大肠杆菌、沙门氏菌、链球菌、布氏杆菌及支原
鸡卡氏住白细胞虫病是由卡氏住白细胞虫寄生在鸡体内所引起的血液原虫病,常引起雏鸡大量死亡,育成鸡发育受阻,蛋鸡产蛋率下降,造成巨大经济损失,其对养鸡业的危害不容忽视。卡氏住白细胞虫R7基因编码第二代裂殖体(second-generation schizont,2GS)的外膜蛋白,R7蛋白可诱导机体产生抗2GS抗体,具有良好的抗原性和免疫原性。本研究根据卡氏住白细胞虫R7基因和ps YNO-1表达载体
禽流感(Avian Influenza,AI)是由属于正黏病毒科A型流感病毒属的禽流感病毒引起的一种严重危害动物健康和人类健康的烈性传染性疾病综合症。A型流感病毒造成危害最大,且最易变异,能逃避宿主免疫应答,因此难以控制。1878年首次报道在鸡群中暴发了禽流感,至今仍在全球范围内影响着家禽的健康,给家禽养殖业造成了巨大的经济损失,同时也威胁着人类的生命安全近年来,禽流感诊断技术快速发展,特别是运用
犬流感病毒(Canine influenza virus,CIV)为A型流感病毒,属于正粘病毒科,流感病毒属的成员。现在犬群中稳定流行的主要有马源H3N8亚型CIV和禽源H3N2亚型CIV。CIV感染犬后,能引起犬只体温升高、咳嗽流涕、精神沉郁及食量减少等临床症状,严重的患犬会产生继发感染并最终导致死亡。随着宠物数量的增多,伴侣动物与人类接触的机会也不断增加,犬作为流感病毒可能的“天然混合器”,感
H5亚型禽流感病毒重组体较多,但流行于我国南方家禽中主要以H5N6亚型为主。2013年,H5N6亚型高致病性禽流感病毒在老挝首次出现,随后在我国野生和家养水禽中逐渐开始流行。截止至2019年2月,我国共发生30起H5N6亚型高致病性禽流感疫情,扑杀约66万只鸡。2014年5月,我国四川省报道了第一例人感染H5N6禽流感病毒的病例。截止至2019年2月,我国有23人感染H5N6禽流感病毒。因此,该病
鸡球虫病(Coccidiosis)是由一种或多种艾美耳球虫寄生于鸡肠上皮细胞引起的原虫病,是世界范围内集约化养鸡业最为多发、危害严重,并且防治困难的疾病之一。本研究以在养鸡生产上引起巨大损失的毒害艾美耳球虫、堆型艾美耳球虫为研究对象,对毒害、堆型艾美耳球虫早熟疫苗株的不同首免剂量,单一种疫苗株免疫以及混合种疫苗株免疫进行免疫效果对比,分析毒害艾美耳球虫与堆型艾美耳球虫用时免疫是否有相互影响,为鸡球
弓形虫病是一种由刚地弓形虫引起的人兽共患寄生虫病,广泛分布于世界各地。动物感染弓形虫后,非常容易引起流产、死胎等临诊症状,严重威胁畜牧业的健康发展,人常因食用了含有弓形虫的食品而感染,因此在畜牧业以及食品安全方面,弓形虫的监测与防控十分重要。对弓形虫病的准确诊断是有效防控弓形虫病的前提,组织涂片染色等传统病原学检查费时费力且检出率低下,且为死后诊断;间接血凝试验、酶联免疫吸附试验等免疫学方法主要检
矮牵牛(Petunia hybrida)是重要的观赏植物,主要用于花台、花境的造景。叶色是观赏植物的重要观赏特性之一。研究影响叶色的形成机制具有重要意义。从表观遗传学角度研究叶色形成机制报道还非常少。RNA甲基转移酶(TRMT61A)是负责RNA腺嘌呤上N1位置上的甲基化;假尿苷合成酶(PUS)是负责断开RNA中尿嘧啶(U)中的N1-C1键后建立新的C5-C1键,最终形成假尿苷(Ψ)。TRMT61
伪狂犬病毒为有囊膜的双链DNA病毒,属于疱疹病毒的成员。可以感染多种动物,其中猪为其贮存宿主,疫苗接种是防控该病的主要手段,且取得了良好的防控效果,但2011年以来国内伪狂犬病疫情再度大面积爆发,新的流行毒株发生了一定程度的变异,导致现有疫苗不能对新毒株的感染提供完全保护,因此有必要研制针对新流行毒株的疫苗。本研究拟采用基因缺失株rPRV-AH-gI-/gE-和rPRV-AH-gI-/gE-/g