论文部分内容阅读
本文主要研究了三类具有Holling Ⅲ型功能性反应和扩散的非自治捕食-食饵动力学系统的稳定性行为.文中对这三类系统进行了分析,主要获得系统持久生存和周期解全局稳定的充分条件,并且通过数值模拟验证部分结论的正确性.第一章,主要介绍了具有Holling Ⅲ型功能反应和扩散的捕食-食饵系统的研究背景、现状及本文中所需的预备知识.第二章,研究了一类具有扩散和Holling Ⅲ型功能性反应的非自治捕食系统,利用比较定理给出了系统一致持久生存的充分条件.当系统是周期系统时,通过构造Liapunov函数,得到该系统存在唯一全局稳定的正周期解的充分条件.第三章,研究了一类具有非线性扩散和竞争关系的食饵种群,具有连续时滞和离散时滞的捕食者的Holling Ⅲ型功能性反应的三种群捕食系统.运用比较定理,得到系统一致持久生存的充分条件.利用·Brouwer不动点定理和Liapunov函数的构造,得到相应周期系统正周期解存在唯一及全局稳定的充分条件.第四章,研究了一类具有扩散和庇护所效应的食饵种群被具有阶段结构和时滞的捕食者捕食,且具有Holling Ⅲ型功能反应的非自治捕食系统.利用比较定理,证明了系统在适当的条件下是一致持久生存的;通过构造Liapunov函数,得到了系统存在唯一全局稳定的正周期解的充分条件.最后,通过数值模拟验证了结论的正确性.