论文部分内容阅读
镍基高温合金由于具有优异的高温强度和良好的抗氧化、抗腐蚀等性能广泛应用于航空航天等重要领域。传统的成形工艺难以同时兼顾镍基高温合金零件的成形性、力学性能和生产成本,半固态加工工艺结合了铸造和锻压工艺的优点,能够同时满足成形件形状和性能的要求。因此将半固态加工技术应用于镍基高温合金具有重要的研究意义,一方面可以为镍基高温合金的成形提供新思路,另一方面也可以拓宽半固态加工的材料适用范围。本论文以镍基高温合金GH4037为研究对象,对其进行了半固态温度下的组织演变和触变成形研究,通过对成形件组织和力学性能的评估验证了半固态加工工艺在镍基高温合金领域的可行性,并为镍基高温合金零件的成形制造提供了新的技术支持。进行了GH4037合金固态高温和半固态温度下的短时氧化实验,研究了温度和时间对合金氧化行为的影响规律,同时对空气气氛和保护气氛下试样的氧化情况进行了对比。实验结果表明当GH4037合金在半固态温度区间加热时,试样的氧化程度非常剧烈、氧化增重明显并且表面氧化膜会出现严重的脱落现象。保护气氛条件下试样的氧化程度大大降低,氧化增重小,表面完整无脱落。在半固态温度进行坯料的制备时需要采取氧化防护措施,保证坯料在加热过程中的表面质量和内部纯净度。提出了变形镍基高温合金等温处理制备GH4037合金半固态坯料的新方法,研究了等温温度和保温时间对合金组织演变的影响规律。实验结果表明在1350~1380°C时,通过适当时间的等温处理可以得到具有球状晶组织的半固态坯料。在1350°C和1360°C时,晶粒长大符合粗化机制;在1370°C和1380°C时,组织演变规律受到粗化机制和破碎机制的共同影响。制备GH4037合金半固态坯料最佳工艺参数的等温温度为1380°C,保温时间为30 min,该工艺参数下半固态坯料的平均晶粒尺寸为130.2μm,圆整度为0.65。对GH4037合金进行了高温压缩实验,得出了不同条件下合金的应力应变关系,研究了热压缩过程中合金的组织演变规律和再结晶行为。结果表明GH4037合金的流动应力和峰值应力随着变形温度的升高和应变速率的降低逐渐减小;当处于半固态温度时,GH4037合金的表观黏度和剪切速率的关系符合非牛顿流体幂律模型,表观黏度随着剪切速率的增加逐渐下降,表现出明显的剪切变稀行为。此外,对半固态触变成形的实验过程进行了数值模拟,由于坯料横向放置时与模具的接触时间更短,成形后模具的温度更低,成形件出现缺陷的可能性更小,因此坯料横向放置时更利于合金的触变成形;其它工艺参数对触变成形过程也有着不同程度的影响,实际实验时需要综合考虑各个成形参数的影响并进行合理的选择。对GH4037合金进行了半固态触变成形实验,从成形件的宏观形貌、微观组织和力学性能等方面评估了成形件的质量。结果表明当坯料温度高于1360°C时,成形件能够完整充填,并且表面质量良好,内部组织致密。坯料加热温度和保温时间对成形件的组织和力学性能影响较大,而保压时间对成形件的组织和力学性能影响较小。确定了GH4037合金触变成形最佳工艺参数为:等温温度1380°C,保温时间30 min,保压时间30 s。对GH4037合金触变成形件进行了热处理研究。结果表明当时效温度为800°C、时效时间为8~16 h时,成形件能得到最佳的力学性能。热处理后成形件的共晶组织完全消失,晶界有连续的碳化物析出,晶内有均匀细小的γ′相析出。热处理能极大地提高成形件的拉伸性能和蠕变性能,γ′相导致的第二相强化是热处理后GH4037合金触变成形件的主要强化机制。热处理前,成形件的屈服强度和抗拉强度分别为624 MPa和975 MPa,延伸率为45.1%;热处理后屈服强度和抗拉强度分别为724 MPa和1030 MPa,分别提高了16%和6%,但延伸率有所降低。热处理前,成形件在850°C/196 MPa蠕变条件下的蠕变寿命和蠕变应变分别为28.3 h和3.3%;热处理后,蠕变寿命和蠕变应变分别提高到52.7 h和9.9%。