论文部分内容阅读
由于政策导向和互联网经济爆发,国内陆上物流业蓬勃发展,重型商用车成为公路运输的主力军。长途运输中,商用车驾驶员长期处于恶劣的振动环境下,对乘员的身心健康造成不良影响,且产生的驾驶疲劳会招致发生交通事故的隐患。商用车驾驶室悬置系统能够有效衰减传递到驾驶室的振动能量,提升整车平顺性,并能为整车动力性和经济性等性能的发挥提供良好的保障。因此,对商用车驾驶室悬置进行研究,于客户于制造商,都大有裨益。首先,本文详细介绍了驾驶室悬置系统的发展历程、基本结构和功能,进行了整车道路平顺性试验,对试验采集的加速度数据按照国标要求处理后,分别以悬置振动衰减率和座椅加速度乘坐值作为评价指标,对悬置隔振性能以及整车的平顺性进行了客观评价。试验中,悬置下方的加速度传感器采集了车架端的振动信号,作为本文理论模型的振动输入。其次,给出了驾驶室相关参数,对弹性元件和横向稳定杆等特殊元件作了特殊处理,介绍了参数线性化的理论依据及方法。对实际模型进行简化后,按照实际参数在ADAMS软件中建立了驾驶室悬置仿真模型,并以实测的悬下振动激励作为输入进行了振动仿真,验证了模型的精准度。再次,根据响应面试验设计方法,对设计变量制定了多组仿真方案,根据仿真采集的数据,拟合了驾驶室地板垂向加速度和质心纵向角加速度这两个振动响应量的响应面方程,并用方差分析和统计计算方法验证了方程的显著性和有效性。最后,根据多目标优化问题基本原理对振动响应量进行优化,对拟合的响应面方程用自适应粒子群算法进行了寻优,优化后的方案经ADAMS仿真验证,最常用车速下响应量功率谱密度峰值分别下降16%和17.3%,对应加速度均方值分别下降9.4%和8%,仿真结果的目标函数最优值与粒子群算法对方程的寻优值误差为2%,其余车速下响应量功率谱密度峰值均有明显下降,说明本文的优化工作有一定效果并且优化方法可行。