论文部分内容阅读
随着环保要求的不断提高,生物基可降解材料在越来越多的领域得到推广使用。聚乳酸(PLA)是较早得到开发的生物基可降解材料,聚羟基脂肪酸酯(PHA)目前在研发及推广应用的阶段。此两种可降解聚酯材料虽有着优良的生物可降解性能,能满足环保材料的要求,但二者会存在一些固有结构造成的性能缺陷如PLA的结晶速度慢,燃烧时严重熔滴,以及PHA的热稳定性差和综合性能有待提高等,在加工成型过程中需要对其多功能改性优化性能以拓宽其应用范围。二乙烯基苯-马来酸酐中空微球(DM)是一种新型的中空结构微米尺寸的粒子,分子结构中的苯环结构赋予粒子较强的刚度,利用其特殊的空间结构及自身的马来酸酐活性反应基团,有望在聚合物基体尤其是聚酯中应用并提升基体的综合性能,具有作为聚酯改性剂的潜力,目前,有关中空微球作改性剂特别是其对可降解聚酯的改性研究少有报道。本文针对可降解聚酯的上述问题,用熔融共混入改性剂二乙烯基苯-马来酸酐中空微球进行多功能化改性。主要研究成果如下:(1)DM可以作为PLA的一种新型有机成核剂加快其结晶速度。通过差示扫描量热仪(DSC)进行非等温/等温结晶动力学研究,发现PLA的结晶速度和结晶度随着DM添加量从0%增加到3%而增加;偏光显微镜(POM)观察表明,DM作为成核剂提高了成核密度,同时降低了球晶尺寸;广角X射线衍射(WAXD)图谱表明,DM不会产生新的晶型。结晶度的提高及球晶尺寸的降低使PLA的脆性得到一定程度改善,如0.5%DM可使PLA的断裂伸长率比纯PLA提高2.4倍;其耐热性能也有所改善。(2)针对传统的膨胀阻燃体系阻燃剂(IFR)无法高效阻燃PLA,以及难以抑制其严重熔滴等问题,将DM熔融共混入PLA/IFR体系中制备了 四 种 复合材料 PLA/24%APP,PLA/18%APP/6%PER,PLA/20%APP/4%DM 和 PLA/15%APP/5%PER/4%DM 作为对比,通过氧指数测试(LOI),垂直燃烧测试(UL-94)和锥形量热分析(CONE)表征了复合材料的燃烧行为,发现加入DM能减少PLA膨胀阻燃体系的严重熔滴,其中样品PLA/15%APP/5%PER/4%DM达到无熔滴V-0等级,原因是DM的马来酸酐基团捕获PLA的羟基发生化学交联,提高了体系的粘度从而起到抑制熔滴的作用;同时,DM能降低复合材料阻燃效果,例如,与 PLA/18%APP/6%PER 相比,PLA/15%APP/5%PER/4%DM 的氧指数降低了 0.6%,热释放速率峰值和总热释放量分别提高60kW/m2和16 MJ/m2;另外,热重分析(TGA)发现DM可以促进基体成炭,原因是自身的二乙烯基苯基团以及交联成炭两种成炭机理,其成炭作用也对有助于其抑熔滴的作用。(3)间苯二酚双(二苯基磷酸酯)(RDP)对聚酯同时具有热稳定、增塑以及阻燃作用,将其与DM复配入聚3-羟基丁酸酯4-羟基丁酸酯(P34HB)中,通过在空气和N2气氛围下TG和同步热分析(TG-DSC)测试对P34HB及其复合材料的热稳定性进行表征,发现RDP可以延后P34HB在较低温区的初始降解,DM主要对中高温区的最大降解起作用,二者复配能够产生协同效应;TG-IR测试表明RDP、DM及其复配均添加均不能改变P34HB的降解机理,只是延后其降解过程;导热系数发现DM具有较高的导热系数。机理分析为:RDP通过封端、扩链以及空间位阻延后P34HB降解过程中的顺式消除和分子内酯交换反应,DM则通过封端、位阻以及高导热性能减缓其降解过程,二者不同机理是其具有协效作用的原因。另外,发现刚性粒子DM和柔性增塑剂RDP可以复配调节P34HB的结晶、力学和加工性能,在实际生产中具有重要意义。