双材料界面端应力场分布规律

来源 :太原科技大学 | 被引量 : 0次 | 上传用户:t7899
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着新材料与新技术的发展,结合材料在工程实际中广泛应用,界面问题已逐渐引起人们的关注。在外载荷作用下,界面裂纹就会发生扩展,其扩展行为对双材料结构的实用性能和寿命具有重要影响。许多学者对双材料界面裂纹的扩展理论、扩展模型以及影响其扩展的因素进行了大量研究,但对于结合材料界面端断裂力学理论的研究尚未成熟。由于结合材料界面端存在应力奇异性,界面端通常是断裂的起始点,因此建立结合材料界面端断裂准则是十分必要的。  本文采用复合材料断裂复变方法,通过建立在zj平面上的复变函数,根据特殊的应力函数,将复合材料平面断裂问题转化为一个偏微分方程边值问题,同时利用边界条件,求解八阶齐次线性方程组,最终获得各向同性与正交异性双材料平面直角结合界面端的特征方程,并进行数值求解,对应力奇异性进行初步探讨。结果显示,对于不同结合材料,各向同性与正交异性双材料平面直角结合界面端应力可以具有奇异性或不具有奇异性。  本文研究了通过不同材料参数的组合和不同角度的变化,正交异性双材料、各向同性双材料、各向同性和正交异性双材料三种不同的结合材料反平面平板搭接界面端应力分布规律。结果表明,随着Γ和θ的变化,不同结合材料应力呈现出不同的规律,利用这些规律可以在界面端裂纹断裂准则或其它工程应用方面作为依据。
其他文献
本文研究了一类带混合边界条件和扩散作用的比率依赖捕食模型,其中捕食者带齐次Robin边界条件,被捕食者带齐次Neumann边界条件.在这个捕食模型中,捕食者不仅有系统中被捕食者作
本文主要研究Lin-Bose问题。1999年,Lin与Bose基于矩阵的既约子式与最大秩子式的最大公因式,提出了关于n元多项式矩阵子式素分解的一个猜想。实际上,这是一个关于矩阵的行列式分
随着计算机网络以及基于网络的分布式计算的发展,对于Agent系统的研究,已成为 人工智能领域中一个新的研究热点,也成为分布式人工智能的重要研究方向。基于Agent
学位