论文部分内容阅读
量子信息科学是量子力学与信息论结合诞生的一门新兴学科。量子通信是量子信息科学的重要组成部分。基于量子力学的不确定性原理和不可克隆定理,量子保密通信提供了一种理论上无条件安全的通信方式,近些年得到全世界的广泛关注。在量子通信系统中,单光子作为信息的载体在量子信道中传输,作为终端的单光子探测器成为关键核心设备,其性能指标直接制约了量子通信系统的性能。迄今为止发展了各种单光子探测技术,其中半导体单光子探测器因为其体积小、低成本、易操作等优势成为了实际应用的首选解决方案。研发高效率、高集成度的半导体单光子探测器对于实用化量子通信应用具有重大意义。半导体单光子探测器有单光子雪崩二极管和雪崩淬灭读出电路两个核心组成部分,两者都对探测器的性能有着根本影响。单光子探测器的主要性能指标有探测效率、暗计数率、后脉冲概率、最大计数率和时间分辨率。在很多应用中,探测效率通常是最重要的性能指标,需要专门针对探测效率进行优化。本文介绍作者于博士期间在硅和InGaAs/InP单光子探测器高效率和集成化方向上的研究工作。针对单光子雪崩二极管性能指标对比需求,分别搭建了自由运行硅单光子探测器测试平台,低速门控和高速1.25 GHz正弦门控InGaAs/InP单光子探测器测试平台,实现性能指标的自动化测试;针对“厚结”硅单光子雪崩二极管,设计了单片集成的主动淬灭与主动恢复电路,并应用此电路芯片设计实现了超高效率的自由运行硅单光子探测器;针对InGaAs/InP单光子雪崩二极管,优化了器件结构和电路参数,实现了1550nm波段超过60%的探测效率,并设计了单片集成的雪崩读出电路,在此基础上研制了微型化的超高效率1.25 GHz正弦门控InGaAs/InP单光子探测器,同时对一体化集成的InGaAs/InP单光子雪崩二极管器件进行了设计研究。在本论文研究中,主要有以下创新点:(1)针对多光子纠缠、量子中继等实验需求,设计并实现了单片集成的主动淬灭与主动恢复电路,将“厚结”硅单光子雪崩二极管的探测效率推向了极限值,相对于商用硅单光子探测器产品,探测效率的相对提升数值达到8%;(2)通过优化单光子雪崩二极管器件结构设计,在光敏面顶部区域增加介质-金属反射层使得吸收效率相对提升了 20%,同时优化了门控幅度和器件工作温度等电路参数,实现了 1550 nm波段超过60%的探测效率;(3)针对下一代高速率量子通信系统需求,利用单片集成的雪崩读出电路芯片和高效率单光子雪崩二极管,设计实现了微型化的超高效率正弦门控InGaAs/InP单光子探测器。