【摘 要】
:
随着近几十年来纳米加工技术的飞速发展,金属纳米结构的光学特性博得了研究者们更多的关注,这主要是因为金属纳米结构中自由电子可以被光激发而出现集体振荡,称之表面等离激元(SPP)。这种集体振荡会在适当的入射光频率下达到共振,这时光被极大地限制在金属表面上的纳米级区域,出现表面等离子激元共振(SPR)。金属的这一优异的光学特性也被应用在各个领域,表面增强拉曼光谱(SERS)是最常见和最重要的应用之一。由
论文部分内容阅读
随着近几十年来纳米加工技术的飞速发展,金属纳米结构的光学特性博得了研究者们更多的关注,这主要是因为金属纳米结构中自由电子可以被光激发而出现集体振荡,称之表面等离激元(SPP)。这种集体振荡会在适当的入射光频率下达到共振,这时光被极大地限制在金属表面上的纳米级区域,出现表面等离子激元共振(SPR)。金属的这一优异的光学特性也被应用在各个领域,表面增强拉曼光谱(SERS)是最常见和最重要的应用之一。由于表面等离激元的作用在很大程度上取决于金属尺寸、形状和材料,所以金属纳米结构对SERS信号的增强有很大的影响,对由金属纳米结构组成的SERS基底进行研究也成了SERS应用的核心任务之一。除了常见的金属纳米颗粒以外,近年来,自组装二维纳米粒子薄膜因其制作工艺方便、信号均匀、灵敏度高、成本低等优点在SERS基底中展现出广阔的应用前景。因为二维等离子体膜的SERS性能是由组成膜的纳米颗粒的表面等离激元激发和耦合所决定的,而表面等离激元的激发和耦合受到纳米颗粒形状和大小的强烈影响。因此,研究以新型纳米粒子作为SERS基底的二维等离子体膜可能是相关领域一个有趣的课题。本文围绕着二维SERS基底主要做了以下研究:(1)通过多元醇方法合成米状银纳米颗粒,再以合成的银纳米米为组装单元,采用液-液界面自组装技术将其组装成单层银纳米米膜,通过SEM对制备的2D银纳米膜进行表征,再以亚甲基蓝(Methylene Blue:MB)、罗丹明6G(Rhodamine6G:R6G)、PATP作为探针分子,借助拉曼光谱仪和Mapping等手段对2D银纳米膜用作SERS基底的可行性进行验证,结果表明该基底对每种信号分子都具有明显增强效果,对MB的检测极限可达到10-9,增强因子EF=1.40*10~5(2)研究了2D银纳米膜作为SERS基底时的表面等离激元性能。首先利用COMSOL软件计算单个银纳米米的电荷分布情况,结果表明单个银米具有各向异性,但将其排列成2D银纳米米膜后,通过测量2D银纳米膜的反射光谱发现银纳米米的各向异性遭到了破坏,实验上也证明了该基底没有偏振依赖性。(3)通过COMSOL模拟,将2D银纳米膜结构简化为不同构型的银纳米二聚体模型,再计算在不同激光波长照射下,银纳米米二聚体的电场分布,从理论上分析2D银纳米膜对吸附在自身表面处的分子的拉曼增强主要来源于颗粒间隙处,得出2D银纳米膜基底有波长依赖性,使用785 nm的激发光源有更好的SERS性能。(4)进行尝试性研究,将2D银纳米膜置于甲醛蒸汽环境中,验证了以其SERS基底用于拉曼技术检测微量有害气体的可行性,为微痕量气体检测提供了一种新方法。(5)以2D银纳米膜为SERS基底,将SERS技术应用于食品安全检测上,对枸杞是否经过胭脂红染色处理进行测定。提供了一种简便、快速地检测不良食品添加剂的方法,进一步扩大拉曼光谱的适用范围。
其他文献
近年来,随着增材制造技术的快速迭代发展,许多复杂结构的直接成形成为可能。其中,点阵结构因具有优异的机械性能、减震吸能的功能特性、结构参数可控的特点被广泛用于航天航空、生物医疗、交通运输等领域。而基于三周期极小曲面(Triply Periodic Minimal Surfaces,TPMS)的隐函数方程构建的点阵结构不仅具有上述优点,还弥补了传统类金属晶格点阵结构在节点容易产生应力集中、性能难以调控
随着互联网信息技术的高速发展以及网络带宽的日益提高,越来越多的用户开始在云服务器上存储大量的个人数据,但也随之带来了很多问题,比如数据隐私和数据检索等问题。通过将属性基加密机制(ABE)与可搜索加密机制(SE)相结合,既可以解决云存储下数据的隐私问题又可以解决海量数据高效检索的问题。目前在可搜索的属性基加密(ABSE)领域的研究已经取得了众多的进展,然而大部分已有的方案均是基于判定型双线性对来构建
复方对乙酰氨基酚片(Ⅱ)是一种由对乙酰氨基酚、异丙安替比林、咖啡因及适量辅料组成的复方型非处方解热镇痛药,一般用于缓解感冒引起的发热,也可缓解牙痛、头痛、神经痛等症状。因其散热止痛起效快,持续时间较长且副作用相对其他同类药品更少,在临床上运用十分广泛。目前国内外载入本品的标准仅有《国家药品标准》-化学药品地方标准上升国家标准第十六册,但标准依然存在检查项不全面、测试方法陈旧和无有关物质检查等问题。
由于太赫兹波具有独特的低光子能量,在生物以及非金属材料内部有着高穿透能力且不会对其造成损伤,因此太赫兹在无损检测、材料识别、成像等领域具有广阔的应用前景。然而,传统太赫兹聚焦透镜如抛物面镜,球面透镜大多厚重,且受衍射极限制约。超表面结构可以灵活地调制电磁波的相位、振幅和偏振,利用这一优势并结合光学超振荡原理设计的超表面透镜不仅轻薄,而且可以实现超分辨聚焦,但是现有的太赫兹超表面聚焦透镜大多数值孔径
镁合金作为最重要的轻合金之一,是目前广泛应用中密度最小的金属结构材料,发展潜力巨大。但是镁合金在应用的广泛性上与钢铁、铝合金等其他结构材料还有一定的差距,主要是由于镁合金在室温下强度不高等缺点限制了镁合金的应用。基于此,研究开发高强度、低成本变形镁合金的重要性不言而喻。Mg-Zn-Mn系变形镁合金综合力学性能较好且成本较低,但室温强度还不够高,本课题为了提高Mg-Zn-Mn系高锌变形镁合金的强度,
近年来,由于全球对化石燃料(石油、煤气)的过度消耗而导致能源短缺和环境污染等问题日益严重。微生物燃料电池(MFC)是一种崭新的能源可再生技术,有机废物中储存的化学能能够在产电微生物的作用下转化为可直接利用的电能,能够极大地利用废水中储藏地巨大能量,在处理环境污染的同时还能产生清洁的能源,对开发清洁能源和缓解环境污染都有重要的意义。但MFC的输出功率密度不足成为限制MFC实际应用的瓶颈。本研究以提升
职住平衡研究已逐渐成为学界研究的重点,但当前国内研究更多是基于宏观区位探讨地区间职住均衡问题,对于特定群体如低收入群体的职住关系研究相对较少,而只有在认知明晰低收入群体职住特征与影响的基础上,相关政策和规划措施(如保障房布局、社区规划等)才能有的放矢,以提升低收入群体生活质量,改善城市贫困问题,促进社会和谐发展。因此,本文将通过大小数据结合的研究方式,以重庆市中心城区三类低收入社区(公租房、城中村
建筑工程质量与万千百姓的生命财产安全息息相关,对其进行管理的重要手段是建筑工程质量检测。开展质量检测可以杜绝或减少不符合要求的建筑材料被用于建筑工程中,并为建筑工程全过程的质量保障提供技术支持和依据。目前该领域已有较多研究成果,但对于行业规范性评价及改进对策的研究仍然存在较大不足。基于此,论文旨在构建起一套全面且系统的建筑工程质量检测行业规范性评价指标体系,并建立起相应的评价机制,用于分析不同目标
无线通信技术打破了时间和空间上的限制,使得高速的无线连接随时随地可接入,例如,在线支付、在线办公、掌上银行等,为人们的工作和生活带来了极大的便利。但由于无线信道的广播性和空中接口的开放性,使得无线通信易受到恶意攻击,同时也极易被可疑用户滥用进而以先进的无线收发设备进行非法信息交互。针对这一问题,从国家安全的角度出发,政府部门需要借助有效的监听方法对无线通信网络中潜在的可疑通信进行监听和干涉。为此,
随着人们生活水平的提升,对身体健康方面的要求也越来越高,更多人选择居家环境下的健身来提高身体素质。另一方面,WiFi信号由于其低成本和普及性等特点被广泛应用于室内环境下的动作识别。因此利用WiFi信号对居家环境下的健身动作进行识别具有可行性与实用性,可以有效的指导室内健身活动。然而用户的行为习惯、体型和性别等存在差异,训练通用模型用于不同用户的动作识别往往因为忽略这些差异而出现模型性能下降的问题。