范畴中广义Moore-Penrose逆与幂等算子研究

来源 :广西民族大学 | 被引量 : 0次 | 上传用户:iloveyouguoran
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究范畴中态射广义Moore-Penrose逆与半范投影幂等算子的一些性质,具体内容如下: 给出了预加法范畴中态射的满单广义分解的概念,研究了具有满单广义分解的态射Moore-Penrose逆存在的条件及其表达式;给出了态射加权Moore-Penrose逆的倒换顺序律成立的八种等价刻画;利用加边态射获得了态射广义Moore-Penrose逆存在的一些新的充要条件及相关表达式。提出了一种方法,研究了两个不同半范投影算子及满足一些特殊条件的三个不同半范投影算子的幂等性的条件。
其他文献
随着经济的发展,科学的进步,我国的工程项目管理中存在的诸多问题,必须加强管理力度以及想出创新的办法克制诸多问题的出现。本文主要对工程项目管理问题进行简要的探讨。
期刊
本文主要讨论了基于块的混合切触插值问题,其主要内容包括基于块的Lagrange-Salzer混合切触有理插值和基于块的Newton型混合切触插值。 利用分块的思想将连分式切触插值与L
本文重点考察了矩阵中的极小极大理论及其应用.本文在Courant-Fisher定理的基础上,讨论了奇异值以及几类矩阵中的极小极大定理,并且给出了极小极大定理在矩阵中的几个应用实例.
矩阵广义逆理论是矩阵代数中研究的活跃领域.矩阵广义逆理论在控制论、金融数学、最优化等领域有重要的应用,它在矩阵代数中尚有大量问题没有解决,其中分块矩阵Drazin逆、群逆表
摘要:本文通过“5.12”汶川地震对北川生态环境影响分析,提出了影响北川生态修复制约因素,并针对制约因素提出合理的生态修复对策,为地震极重灾区生态修复提供参考依据。  关键词:地震 , 极重灾区 ,生态修复 , 困难 , 对策研究  Abstract: this paper through the "5.12" earthquake beichuan to ecological environme
期刊
随着我国高速公路的迅猛发展,公路质量是工程的生命已成为人们的普遍共识,而作为检验工程质量的唯一有效手段——试验检测,其重要性不容忽视,本文主要基于试验检测工作的重要性,去
期刊
细分算法是计算机辅助几何设计(CAGD)中的重要算法,为了实现细分算法,我们从初始控制点出发按照适当的线性组合的办法来插入新的控制点,不断重复这个过程,其极限状态就是一条
二元样条函数空间在有限元方法、数值逼近理论、曲面拟合、散乱数据插值、偏微分方程数值解和计算机辅助几何设计(CAGD)等方面有着广泛的应用. 在二元样条插值理论中, 一
近三十年来,随着人工智能的发展,用于解决不确定问题的贝叶斯网络逐渐引起人们的研究兴趣.但在实际问题中,由于受到许多客观条件的限制,我们能够获得的数据集非常有限,因此,