考虑路径选择和可再生能源消纳的电动汽车充电调度策略

来源 :燕山大学 | 被引量 : 0次 | 上传用户:majinrao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着世界范围内能源短缺问题日益加剧,如何实现可持续发展成为各国共同关注的问题,电动汽车在此背景下应运而生。凭借耗能低、可调度性能灵活等优势,电动汽车受到我国乃至全球多个国家和地区的大力推广,其市场影响力不断提升。科学合理地对电动汽车进行能量调度,对于提高能源利用水平、保持电力系统安全稳定运行和增强用户使用体验尤为重要,但目前距离实现其调度性能的利用最大化仍有一定空间。基于此,本文在考虑路径选择和可再生能源消纳的同时,提出电动汽车充电能量调度的相关策略。主要内容如下:首先,介绍电动汽车充电调度的相关理论。对电动汽车无序充电理论模型、可再生能源出力模型和排队论进行阐述,分析各理论在电动汽车充电调度策略制定中的作用,为后续研究奠定理论基础。其次,基于电网运行和实时交通信息,提出考虑电动汽车充电路径选择的能量调度策略。该策略在为用户提供最短时间的充电路径选择外,还以利用电动汽车充电行为对电网负荷波动最大化的平抑为目标进行优化调度。并且建立了电动汽车充电功率调整模型,根据电网运行情况对充电功率进行调整,以达到通过电动汽车的充电响应来抑制电力系统负荷波动的目的。此外,为每一辆响应调度策略的电动汽车提供了同时兼顾电力系统,交通系统以及充电站实时信息的导航计划,同时改进的Dijkstra算法在求解性能上有所提升。最后,基于对电动汽车充放电灵活性的考虑,提出了一种电动汽车与可再生能源出力协同优化的充电站能量调度策略。该策略以最大化可再生能源消纳情况和最小化电动汽车用户充电成本为目标进行优化调度。对于每一辆进入充电站内的电动汽车,均根据其接入电力系统时的初始电池荷电状态进行充放电灵活度评估,进而可以得到整个充电站内实时的可调度水平。根据充电站内的可调度水平以及可再生能源的出力情况,对每辆接入充电站内的电动汽车制定了最优充放电计划。
其他文献
稀土发光材料因具有低辐射损伤、高化学稳定性、弱自发荧光、强吸收能力等特性,使得其在稀土功能材料领域中的研究价值均位居前列。NaGdF4因具有出色的光磁性能,低声子能量,高上转换效率以及紫外-红外较宽的光学透过性而被广泛关注。本文通过第一性原理计算与实验制备相结合的方法,从晶形结构、发光调控和机理分析角度研究NaGdF4:Er3+/Yb3+上转换纳米发光材料,并着重考察其在双光束共同激发时的发光性能
碳化硅(SiC)材料是第三代宽带隙半导体,具有许多优越的物理性能,在纳米光电器件中具有广泛的应用。碳化硅纳米管(SiCNTs)是一种重要的低维半导体材料,它不仅保留了 SiC晶体的优良特性,还表现出纳米管特有的一些性质,例如高的内外表面活性、电子结构可调、热稳定性好、能在极端恶劣条件下工作等性能,被广泛应用于高频、高击穿场强、高温、高导热和抗辐射等技术领域。掺杂可以调节SiCNTs的物理性能,以获
表面增强荧光(Surface Enhanced Fluorescence,SEF)是指分布于贵金属表面或其溶胶附近的荧光分子,其荧光发射强度较之自由态荧光发射强度大大增强的现象。目前对于荧光增强基底的研究已经成为焦点,但是很多具有纳米结构的荧光增强基底存在着不足,如:合成步骤复杂、成本较高等,这些问题对表面增强荧光的应用与发展带来一定的阻碍。基于此,本论文通过在具有大规模纳米结构的天然基底表面构筑
热电材料是一种利用固体内部载流子以及声子的运动,实现热能和电能直接相互转换的功能材料。在清洁能源与制冷等领域有着十分广阔的应用前景。Bi2Te3基合金作为室温下性能最好的热电材料,一直以来备受人们关注。近年来p型Bi2Te3基材料的热电性能获得很大提升,相比之下,n型Bi2Te3基热电材料的热电性能的提升较小,导致由p、n腿组合构成的热电器件的转换效率难以获得明显提升,制约了热电器件的大规模应用。
近年来,氢能源因其产物清洁,环保,而引起了全世界的关注,被视为可替代不可再生能源的能源。电解水制氢是常用且有效的方法,但因为过程中能量损耗严重,而受到限制,因此,寻找一种高效的析氢电催化剂是解决问题的关键。Pt等贵金属作为电催化剂来说具有着非常好的析氢性能,但因为成本问题而有着自身的局限性,无法广泛应用。因此,镍、铁等过渡金属走入了人们的视线。本文制备了镍钨合金电催化剂并探究了其在碱性溶液中的析氢
含铜、磷、铬、镍、硅等合金元素的耐候钢是一种重要的防腐材料用钢。近年来,随着海洋资源在世界范围内的大量开发和利用,耐候钢具有优异的耐腐蚀性能和良好的力学性能,成为沿海地区大型结构桥梁钢的主要材料。本文研究了不同Ti含量(0.014%、0.044%、0.084%、0.144%)对Q420qENH钢力学性能及初期腐蚀行为的影响,探索了其强韧化机理。通过对试验钢进行显微组织表征、拉伸性能和冲击性能的测试
随着科技的飞速发展,出现了大量电子设备,设备的频繁使用导致电磁波无处不在,电磁辐射在损伤人类身体健康的同时还会影响电子设备的正常运行,因此高性能电磁吸波材料成为人们的研究重点。在实际应用中人们期望得到吸波性能强,质量轻,厚度薄且有效频带宽等特点的理想型吸波材料。金属有机骨架(MOF)材料具有多样化的空间结构,其金属粒子尺寸、占位、孔径、比表面积等可在制备过程中进行调节,凭借这些特点其在超级电容器、
以超大型钨矿石门寺钨矿为主要研究对象,采用勘查区找矿预测理论与方法。明确了该区细脉浸染型成矿地质体为燕山期斑状黑云母花岗岩,热液隐爆角砾岩型矿体和石英大脉型矿体为花岗斑岩;成矿构造为近EW向断裂构造,NNW向断裂构造,控制石英矿脉的分布,成矿结构面为燕山期斑状黑云母花岗岩顶部接触面,与似伟晶岩壳分布的大体一致,控制大规模浸染状矿化的分布,花岗斑岩及隐爆角砾岩边部成矿结构面,控制大规模隐爆角砾岩型矿
氧化铝陶瓷由于优良的耐热性、硬度、耐腐蚀性等性质,在航空航天材料热防护涂层领域有广泛的应用前景,但是脆性、低韧性及热应力敏感等缺点使其应用受到限制。使用激光熔覆原位制造技术制造颗粒增强型氧化铝陶瓷可以有效改善其脆性和韧性问题,为制造出优良的颗粒增强型氧化铝涂层,本文对使用四氧化三铁和铝的混合粉末在钛合金基板上激光熔覆原位制造Al2O3-Fe颗粒增强型复合涂层的过程进行热-力分析研究,为实际工程制造
作为半导体材料,碳化硅由于其高临界击穿场强、高导热系数、高电子饱和、宽带隙、热膨胀系数小、介电常数小、化学稳定性好、热稳定性和抗辐射能力强等特点,受到越来越多学者的关注,并在激光、紫外探测器、微波和毫米波功率器件的应用等方面获得了一些优异成果。碳化硅纳米线(SiCNWs)表面存在大量的断键,这些不饱和的悬挂键会导致SiCNWs电学和光学性质的不稳定,从而制约了它在微纳电子器件等方面的应用,而表面改