【摘 要】
:
近几年,对复杂未知环境进行探测是多机器人系统的研究热点之一,例如未知星球表面、茂密丛林、战场环境和灾后地表环境等。多机器人系统具有效率高、鲁棒性强的特点,在协同的基础上,更适合对复杂未知环境的探测。本文针对复杂未知环境下的多机器人主动协同探测任务,研究了多机器人主动协同探测环境的系统框架、基于RGB-D SLAM的多机器人地图融合算法、融合相对观测信息的多机器人协同定位算法、多机器人地图融合和协同
论文部分内容阅读
近几年,对复杂未知环境进行探测是多机器人系统的研究热点之一,例如未知星球表面、茂密丛林、战场环境和灾后地表环境等。多机器人系统具有效率高、鲁棒性强的特点,在协同的基础上,更适合对复杂未知环境的探测。本文针对复杂未知环境下的多机器人主动协同探测任务,研究了多机器人主动协同探测环境的系统框架、基于RGB-D SLAM的多机器人地图融合算法、融合相对观测信息的多机器人协同定位算法、多机器人地图融合和协同定位实验平台等内容。首先,本文设计了多机器人主动协同探测系统,根据控制对象的不同划分为总体控制规划子系统、局部控制规划子系统和子机器人子系统。在局部控制规划子系统和子机器人子系统所构成的多机器人系统基础上,通过总体控制规划子系统实现多机器人“协同建图”与“协同定位”的系统功能。其次,针对多机器人主动协同探测系统的全局地图模块,提出一种通过判断地图重叠区域来提供ICP算法初始变换矩阵的地图融合算法,解决地图融合算法初始化状态设定复杂的问题。在RGB-D SLAM建图的基础上,通过特征点匹配和对极约束寻找地图重叠区域,并计算地图之间的初始变换矩阵,经过ICP算法迭代后得到地图之间的精确变换矩阵。对所提出的地图融合算法进行仿真实验,实验结果证明,多机器人地图融合算法相比基于位姿图的方法在精度方面可以提升28.3%。再次,针对多机器人主动协同探测系统的多机器人协同定位模块,提出一种融合是相对观测信息的多机器人协同定位算法,在以滤波器迭代为基础的算法上,通过将相对观测信息与系统状态和协方差校正环节融合,减小线性定位带来的马尔可夫假设性的误差,最终提高多机器人系统协同定位精度。搭建了仿真环境,验证了相对观测信息的误差值在10cm以内,并且融合相对观测信息的定位精度高于未融合相对观测信息的定位精度。最后,针对多机器人主动协同探测系统,搭建了由移动机器人、深度相机、中心计算机等组成的实际实验环境对算法进行验证。结果表明,多机器人地图融合算法在在室内环境下可以判断局部地图之间是否存在重叠区域,在拥有重叠区域的基础上可以有效地融合局部地图,地图融合的平均相对误差为3.6%。而且融合相对观测信息的多机器人协同定位算法相比未融合相对观测信息的多机器人协同定位算法可以有效提高估计轨迹的精度。
其他文献
随着航天技术的飞速发展,航天测控系统软件需要适应各种设备、各种频段任务、各种型号飞行器的测控要求,软件需求变化快,软件状态明确晚,软件研制周期短,连续运行时间长,软件质量要求高,软件结构也变得越来越复杂,因此目前航天测控系统软件需要探求新技术、新架构以适应航天测控系统需求。本文以航天测控系统为切入点,通过研究虚拟化、服务通信、资源调度、服务管理等关键技术,将微服务架构思想融入到航天应用软件设计中,
随着人们对导航定位服务的日益依赖,导航系统的可靠性越来越受到关注。GNSS接收机易受外界干扰,信号传播中的多路径效应、城市复杂的电磁干扰环境以及人为的欺骗等都可能造成导航系统的故障。因此,需要借助一系列相关技术,克服接收机干扰提高接收机的可靠性。本文涉及GNSS/INS矢量深组合导航接收机的故障检测与隔离技术,涵盖的主要技术有如下几点:故障检测与隔离技术是提高GNSS接收机性能并提高抵抗干扰能力的
脉冲等离子体推力器(Pulsed Plasma Thruster,PPT)以其功率灵活可变、结构简单、可靠性高、在低功率下能够保持高比冲等特点,可用于执行微小型卫星的姿态控制、阻力补偿以及星座相位控制等任务。随着PPT受到越来越多的关注,如何研制高性能的PPT成为一个亟待解决的问题。等离子体的产生和加速过程直接影响着推力器的性能,因此有必要从PPT的工作过程出发,对放电通道内等离子体的产生和演化机
液体火箭发动机变推力调节是当今航天推进领域的关键技术,对确保航天任务的成功具有重要意义。本文采用静态仿真和动态仿真的方式分别对氢氧补燃发动机推力调节方案和调节过程开展了仿真研究,重点就推力调节方案的选择、流量调节阀动态特性以及流量调节阀对推力调节过程的影响进行了深入研究。本文对液体火箭发动机各组件开展了理论分析,建立了燃烧组件、涡轮泵、冷却夹套、节流元件和管路等主要组件的数学模型,并提出了一种收敛
深度神经网络(DNN)在计算机视觉、自然语言处理和优化控制等各种任务中得到了广泛应用。随着DNN设计的越来越深,高计算资源需求阻碍了其在嵌入式设备上的大规模应用。面对这一问题,人们提出了各种压缩技术,包括剪枝、量化、蒸馏等。而在嵌入式设备的神经网络推理加速硬件上,提高DNN计算效率最普及的方法是使用较低精度的网络表示,即量化。大多数关于神经网络量化的方法都涉及到从头开始的训练,或者作为预先训练的浮
锁相环(PLL)是用于生成与输入信号同相位信号的电路,从它第一次被发明至今,经过了许多发展创新,演变出现了各种各样的类型,并且它们各自有不同的应用场景,目前常见的主要可以用作为频率综合器,数字数据时钟恢复,FM解调电路等。本课题背景是基于高速高精度模数转换器(ADC)项目的研发,目的是设计ADC中提供JESD204B接口时钟信号的锁相环模块。随着转换器精度速度的提升,并行数据传输方式逐渐被高速串行
随着商业航天的发展,美国Space X、加拿大、德国等国家发射了如Star-Link等搭载系统级加固商用处理器的卫星。因为商用卫星有小型化、抗辐射、计算能力强的需求,所以对异构集成电路电、热、力、抗辐射能力的高可靠性和计算性能都提出了新的要求。针对空间应用,本课题主要对异构处理器计算性能和高可靠性中的抗辐射能力进行考虑。通过单元库等传统加固方式加固过的处理器不超过500MHz的处理速度越来越无法满
基于图像处理的液位测量技术通过分析贮箱内液面图像实现液位测量。区别于传统的液位测量技术,基于图像处理的液位测量技术可以有效避免毛细、粘滞等效应对测量结果的影响。由于基于图像处理的液位测量无需额外的测量管路,因此具有体积小,重量轻,安装方便的优点。此外,液面图像包括了更为丰富的信息,通过图像处理,我们不仅可以提取液位高度,还可以进一步得到沸腾、晃动等液面状态。基于以上优点,基于图像处理的液位测量技术
当前反舰导弹主要使用雷达导引头实现精确制导,在雷达导引头进入到扫描目标与跟踪测角工作模式时面临着来自自然环境或者人为故意放出的电磁干扰,这些干扰类型之中的人为施放干扰被分成无源干扰与有源干扰两种类型,如何在错综复杂的干扰环境中准确搜索跟踪目标是导引头的设计中急需解决的主要难题之一。我国近些年来对于该问题的研究取得了一定的进展,缩小了与国外的差距,但是主要技术突破集中在信号处理的时、频、空域上,在极
随着半导体工艺发展,更小的特征尺寸让制造商能够在每颗芯片上集成更多单元,芯片集成度已达到上百万门甚至上千万门。这对于专用集成电路(Application Specific Integrated Circuit,ASIC)来说,设计难度以及制造成本都显著增加,然而芯片集成度提高使得半定制的现场可编程门阵列(Field Programmable Gate Array,FPGA)计算能力和处理能力越来越