典型钨基体系势函数的构建及其在辐照损伤研究中的应用

来源 :湖南大学 | 被引量 : 0次 | 上传用户:oklizheng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
核聚变能是一种极具前景的未来能源,开发合适的聚变反应堆材料是聚变能源发展的重要挑战之一。金属钨(W)由于具有高熔点、良好的导热性、高物理溅射阈值等优良特性,被视为未来核聚变反应装置中最有可能全面应用的面向等离子体材料(PFM)。在高能中子(14.1Me V)辐照下,W材料中除产生大量的辐照缺陷外,还会产生嬗变元素,如铼(Re)、锇(Os)、钽(Ta)、铪(Hf),其中Re是主要嬗变产物,在辐照下会偏析形成χ和σ相。作为PFM,W在其服役期间也将受到高通量、低能氦(He)等离子体的轰击。He在W中的溶解度和迁移能垒很低,极易在W中扩散和聚集,导致气泡和丝状纳米结构的形成。这些都将导致W材料性能劣化,严重降低反应堆使用寿命。由于实验的困难性,计算模拟作为增加我们对材料中子辐照过程的理解以及解释或扩展实验观察的工具而受到越来越多的关注。在这些方法中,分子动力学和蒙特卡洛方法已被广泛使用,但它们都严重依赖于势函数来描述原子间的相互作用。目前,用于辐照条件下的W-基合金体系势函数十分缺乏,相关模拟研究难以进行。为此,本论文发展了部分W-基体系势函数,包括W、Ta、V、Mo、Re元素势函数以及W-Re、W-Ta、W-V、W-Mo二元体系势函数和W-Ta-He三元体系势函数,并对这些势函数进行了系统的检验。对于元素势函数,其很好地再现了拟合的物理性质,包括内聚能、晶格常数、弹性常数、体模量、平衡状态方程、空位和最稳定自间隙原子的形成能。其次,构建的元素势函数合理地预测了辐照缺陷的一些关键性质,如空位迁移能、自间隙原子的迁移能和旋转能、<100>和1/2<111>间隙位错环的相对稳定性以及堆垛层错能等。对于二元合金势函数,其合理地描述了W块体中相应替位溶质原子的形成能、溶质原子与点缺陷的结合能、纯溶质原子对的结合能等关键缺陷性质以及有序合金的形成能和晶格常数。W-Ta-He势函数合理地描述了块体W/Ta中各种He缺陷的性质,如替位、四面体位、八面体位He的形成能、间隙He原子的迁移能、小的He-空位团簇以及溶质Ta与He的结合能等。势函数为Finnis-Sinclair形式,具有较高的计算效率,并作了短程ZBL修正。基于测试结果,构建的势函数适合于辐照点缺陷、位错环以及级联碰撞相关模拟研究,同时可为W-基多元体系以及BCC难熔高熵合金体系势函数的构建提供基础和参考。利用所构建的势函数研究了纯W以及W-Re、W-Ta、W-V、W-Mo合金体系的级联碰撞过程、W中间隙型缺陷与嬗变元素Re的相互作用以及溶质Ta对W中He行为的影响等问题。级联碰撞模拟从缺陷的产生、缺陷的数目和结构等方面进行了详细分析,获得的结果将对钨基体系辐照初级损伤的理解及随后退火过程缺陷长时间的演化模拟提供基础。溶质Re与单个间隙W具有较强结合能力,形成的Re-W哑铃具有低的迁移和旋转能垒,易三维迁移运动。小的W自间隙团簇与溶质Re结合形成稳定的含Re团簇,其运动性明显减弱。当溶质Re位于1/2<111>间隙位错环的核芯区域时,其结合能最高,相互作用距离最大。W-Re合金中,1/2<111>间隙位错环的运动性随Re浓度的增加而逐渐降低。获得的结果有助于理解Re和间隙型缺陷间的相互作用以及Re的初始形核。小的He原子团簇(NHe?4)在纯W中较容易扩散,其扩散激活能小于0.3e V。溶质Ta与小的He原子团簇结合能在0.5-0.9e V之间,对其运动具有一定的钉扎效应。温度较高时溶质Ta并不能定性阻碍He原子的团聚,但由于存在一定的钉扎效应,与纯W相比,溶质Ta的存在对He的团聚在时间上存在一定的延期效应。这些结果为理解He在W-Ta合金中的行为提供基础。
其他文献
一流专业需要有一流课程建设做支撑,一流课程建设需要有有效的教学模式做支持。分析了一流课程和线上线下混合教学模式的内涵,构建了国际贸易实务课程线上线下混合教学模式的三个阶段,总结出了适合本课程的教学评价和考核方式。这种教学模式提升了学生的自主学习能力,提高了教学效率,满足了课程目标实现的需要。
学位
驾驶员在处理紧急避撞工况时,由于其自身局限性容易出现反应滞后、错误判断、错误操作,进而引发交通事故。先进驾驶辅助系统(ADAS)可以提高驾驶员的感知与决策能力,其中汽车主动避撞系统(Collision Avoidance System,CAS)作为驾驶自动化技术的重要补充,其在解决由驾驶员局限性引起的行驶安全问题具有巨大潜力。然而,当前CAS技术主要面向纵向、中低速避撞工况,针对转向避撞方式,其仍
学位
学位
学位
随着电子器件小型化趋势的发展,需要具有同样尺寸的器件帮助将聚集的热量散发出去;同时随着能源危机的加剧,人们在迫切寻找低成本提高能源效率的方法。有机分子尺度的热电材料可以同时满足这两种需求,因而越来越受到人们的重视。本论文围绕有机分子尺度材料为研究对象,展开了热电输运机理、热电性质和性能调控的研究。对于有机分子器件,我们研究了分子器件中电极与中间分子的接触方式、耦合变化以及桥接原子替换、电极的掺杂和
随着微光机电和生物微流控技术的发展,近年来具有衍射、减反、疏水或微流控功能的微结构玻璃元器件得到了越来越多的关注和应用。无机非晶玻璃材料相对于聚合物在光透性、热化学稳定性和生物相容性等方面有着天然优势,然而,其固有硬脆性和高软化温度也增大了其微结构去除加工与热成型难度。对于球面、非球面和光顺自由曲面玻璃透镜,目前主流的制造方式为精密模压成型;相对于传统去除加工技术,模压技术在玻璃材料利用率、加工精
晶体管问世以来,集成电路一直按照摩尔定律飞速发展。集成电路技术也将引领新时代的科技潮流。在未来几十年中,科学技术将进一步朝着人工智能、大数据分析、物联网以及量子计算等高科技方向持续发展。毫无疑问,新一代集成电路将是这些新兴科技的重要组成部分。然而,随着后摩尔时代的到来,当晶体管的尺寸缩小到纳米尺度,由量子效应带来发热、功耗等物理学问题,使半导体集成电路行业发展减速,从而影响了整个科技行业进步。因此
纤维增强复合材料(fiber reinforced plastics,FRP)具有高比强度、高比模量等优异的力学性能,越来越广泛的应用于载人航天、轨道交通和其他海陆空载体等众多领域的结构设计。详细研究复合材料在冲击载荷下的力学行为,如:失效准则、破坏模式、吸能机理等,对指导复合材料结构设计,提高结构的吸能特性和碰撞安全性有重要的理论意义和应用价值。本文对玻璃纤维和碳纤维增强复合材料吸能结构在冲击载