一类Schrődinger方程正解的存在性

来源 :湘潭大学 | 被引量 : 1次 | 上传用户:xiongll
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
非线性Schrodinger方程是数学物理中一类重要的非线性演化方程,在量子力学、非线性光学、电磁学、等离子体理论、固体物理以及玻色一爱因斯坦凝聚等众多领域中得到了广泛应用.而这类演化方程在各领域的应用是以其解的存在性为前提,因而对方程解的存在性的研究具有重要的意义.自上世纪二十年代以来,数学物理界一直关注和研究这一课题.本文在非线性项非常一般的条件下,用不动点理论证明了一类非线性Schr¨odinger方程在n(n≥3)维区域Rn上有界径向收敛正解的存在性。
其他文献
带形状参数的Bezier曲线和B样条曲线的扩展目前为计算机辅助几何设计中研究的热点问题。这一问题研究的主要原因在于:随着几何造型工业的快速发展,原有的Bezier方法、B样条方
投射模和内射模是两类最基本的模,与此相关的是投射盖和内射包的概念,本文系统的讨论了投射盖和内射包的相关性质。首先简单介绍投射模与内射模的相关内容,给出了诺特环上内射模
循环码是一种特殊的线性分组码,循环码的码字是封闭循环转移的,在纠错码的领域中具有非常突出的地位。现如今关于循环码的几乎所有结论都是在假设gcd(n,p)=1的前提下提出的,
Smash积和Hopf-Galois扩张是Hopf代数理论的两个重要概念,研究Hopf代数的常用方法之一是将其分解为smash积的形式,而Hopf-Galois扩张以简洁的方式反映了Hopf代数的结构。  
Stokes问题是流体力学中的一个重要问题,是标准的混合问题,速度与压力同时计算。关于该问题有限元求解的文章很多,分析的难点在于单元必须满足离散的Babuska-Brezzi条件。Hoo