【摘 要】
:
无线通信技术飞速发展,目前,在国内已经开始商用的第五代(5G)无线通信仍然使用循环前缀正交频分复用(CP-OFDM)波形进行传输,但是其具有频谱利用率低,灵活性不足等局限性。滤波正交频分复用(F-OFDM)由于其子带可以根据不同的应用场景设置不同参数,带外频谱泄露(OOBE)低等优点有很大的希望应用于后续的无线通信系统版本当中。但由于使用正交调制,会带来峰均功率比(PAPR)较高的缺点。同时,通信
论文部分内容阅读
无线通信技术飞速发展,目前,在国内已经开始商用的第五代(5G)无线通信仍然使用循环前缀正交频分复用(CP-OFDM)波形进行传输,但是其具有频谱利用率低,灵活性不足等局限性。滤波正交频分复用(F-OFDM)由于其子带可以根据不同的应用场景设置不同参数,带外频谱泄露(OOBE)低等优点有很大的希望应用于后续的无线通信系统版本当中。但由于使用正交调制,会带来峰均功率比(PAPR)较高的缺点。同时,通信系统中,功率放大器(PA)的效率是影响系统效率重要因素之一,而PA的非线性会引起非线性失真从而带来系统误差,数字预失真技术是一项能有效改善PA非线性的线性化技术。本文面向5G无线通信系统,采用FOFDM波形进行数字预失真的研究与设计,由于高的PAPR值意味着高峰值信号较多,而PA的输入信号幅值越大,非线性失真就更严重。因此,本文在该通信系统中对数字预失真(DPD)与降低PAPR技术相结合的结构进行深入研究。主要创新点和内容如下:1.提出一种DPD和降低PAPR技术相结合的结构用于F-OFDM系统。在该系统中,PA由于工作在饱和区域且具有高PAPR值,会产生非线性失真。采用基于降低PAPR结构的DPD可以补偿PA引起的非线性。首先,为了降低PAPR,引入了一种复杂度低的迭代部分传输序列(IPTS)算法与迭代限幅修正(ICR)算法相结合的联合算法。在此基础上,提出了DPD和IPTS-ICR的联合结构。仿真结果表明,IPTS-ICR联合算法与单独的IPTS算法或ICR算法相比,该算法可以更好的提高F-OFDM系统的PAPR抑制性能,分别提升了1.9d B和0.13d B。该联合结构还可以有效地改善F-OFDM系统的非线性失真,降低系统的归一化均方误差(NMSE)和误差矢量幅度(EVM)值。2.提出一种新的多项式数字预失真模型,该模型是一种分数阶的多项式,并引入输出反馈和短期记忆效应。为了更好地验证该模型的性能,将该多项式数字预失真模型与IPTS算法以及压扩变换(CT)进行结合,同时与其他的数字预失真模型进行比较。理论分析和实验结果表明,使用不同的降低PAPR的技术时,新提出的模型都具有更好的性能,而采用IPTS-CT算法与该多项式数字预失真模型结合能使PAPR降低以及PA线性化的效果最好,使用该联合方案后,NMSE性能比传统的记忆多项式模型提高了2d B左右,PAPR值比信号不使用PAPR降低技术降低了6d B。
其他文献
结构振动控制历经40余年发展,各种类型的阻尼装置相继研发,这些阻尼装置均具有自身的优点与局限性。阻尼墙最早由日本学者提出并被广泛应用,其抗震性能优良,耗能材料常为黏滞液体,存在密封件损耗、漏液、启动缓慢等缺点,力学性能与运行温度密切相关。电涡流阻尼具有无接触、无工作流体、启动灵敏、温度影响小等优点,有望改善阻尼墙的力学性能。齿轮齿条是一种常用的运动放大装置,性价比高,可有效提升电涡流阻尼的耗能效率
FOXM1(Forkhead box M1)是FOX转录因子家族的成员之一,大量研究表明FOXM1在各种肿瘤中过表达,在肿瘤的发生发展过程中的起着至关重要的作用,通常与肿瘤患者的不良预后,耐药性密切相关。因此很早就将FOXM1作为抗癌药物研发的靶标,开发了一系列的FOXM1小分子抑制剂用于治疗肿瘤。有研究人员发现,有些来自FOXM1的多肽可以有效地杀伤肿瘤细胞,这为抗肿瘤多肽的开发提供了一种新的思
砂浆中掺入环氧树脂可以改善浆体的保水性和流动性,但是环氧树脂模量低,受力过程中无法有效传递荷载,使砂浆强度降低。此外,为了适应寒冷地区及盐碱地区的工程修补,提高抗冻性和耐盐类侵蚀的能力对工程材料尤为重要。本文选用硅灰和粉煤灰两种掺合料,探究活性掺合料对环氧树脂修补砂浆抗压强度、抗折强度、粘结强度、干燥收缩、抗冻性和抗硫酸盐侵蚀性能的影响,结合SEM观察微观形貌和压汞法测试孔结构参数,分析环氧树脂砂
超高性能混凝土(Ultra high performance concrete,简称UHPC)作为先进的新材料应用于新型装配式结构将具有强度高、自重小、施工性能好、耐久性高、设计自由度大等突出优点。利用新材料与新结构深度融合的同时,考虑到如今拆除房屋造成的废弃混凝土量大且再利用率低等问题,为解决资源紧张及环境恶化的现状应用了再生混凝土(Recycled concrete,简称RC),将废弃建筑垃圾
软磁材料是电子器件的关键材料之一,而现代电子技术的小型化、高频化、高功率化发展要求磁性元件适应其发展的需求,即要求软磁材料具有高饱和磁化强度、高磁导率和低的磁损耗,从而使得高性能软磁复合材料(SMCs)的开发受到广泛关注。目前软磁复合材料主要存在磁性能低和损耗高的两大不足,为此,本文采用原位反应法在金属(Fe-Si)粉末表面生成具有高电阻率的亚铁磁性绝缘层,制备出具有核壳结构的软磁复合材料,在保证
随着建筑业的飞速发展,建筑垃圾与日俱增。对于建筑垃圾的处理手段,目前主要采用堆放和填埋的方式。然而,传统处置措施不仅占用有限的土地资源,对自然环境也造成了巨大的影响。与此同时,水泥稳定碎石因其自身优良的性能而广泛应用于道路建设。但由于基础建设对天然集料大量的需求,我国的公路建设正面临集料短缺的风险。另一方面,稻壳作为农作物的副产物,产量巨大,将稻壳资源再利用于道路工程领域具备较好的发展前景。基于此
我国是一个地震多发的国家,灾后重建过程中对震损结构一律拆除会造成巨大的经济和资源耗费,这将严重影响生产生活的恢复速度。部分在役老旧结构已不能满足现行抗震规范的要求,并且存在如钢筋锈蚀等材料性能劣化的现象,此类震损结构在应急阶段的安全性和恢复阶段的可修性值得进一步研究。为给震后损伤建筑的处理决策提供理论依据,本文对损伤RC构件和框架结构的剩余抗震性能展开研究,主要工作内容及成果如下:(1)从美国太平
随着中国经济的快速发展以及城市环保工作的大力开展,部分重污染企业开始向农村转移,工业排污导致农村人居水环境和农产品重金属污染形势严峻。木屑因其表面结构疏松多孔且本身含大量羟基官能团的特点,可作为水处理领域吸附剂的利用。木屑来源于木材加工所产生的废弃物和林业残留物(林业修剪、枯损木),具有原料丰富、密度小等特点,可作为重要绿色可再生生物资源加以利用。因此,将木屑经过一定处理工艺,用于处理重金属污染问
地下水是我国公共饮用水重要的供水水源,目前我国东北、华东、中南等区域地下水锰污染严重,给各区域的用水安全造成了不利影响,因此除锰技术与除锰材料的研究对人们用水安全具有重要意义。为此,本研究开展除锰复合材料的制备及其去除饮用水中Mn(II)的研究,为含锰地下水的吸附处理乃至将来构建一体化系统提供技术指导。本研究采用共沉淀法制备了羟基氧化铁/活性炭复合材料(Fe OOH@GAC),分别采用SEM、BE
建筑结构在其服役期间,受到自然环境和人为因素的影响而不断累积损伤。损伤的存在会严重影响结构的工作性能和安全性,因此损伤识别对于建筑结构的安全运营具有重要的意义。Hilbert-Huang变换因其对非线性信号时频分析的优越性被广泛应用于结构损伤识别中,然而作为Hilbert-Huang变换的核心步骤,经验模态分解(EMD)却存在端点效应和模态混叠等问题。本文针对EMD存在的端点效应问题进行了分析研究