【摘 要】
:
随着遥感技术的快速发展,能够获取的遥感影像在空间分辨率、光谱分辨率和时间分辨率上都有了明显的改进,这些先进的遥感技术为观测地区乃至全球的变化提供了大量的宏观和实时数据。其中,高空间分辨率的影像因其空间分辨率高,对地面物体的辨别能力强而受到研究者的青睐,虽然分辨率的提高可以更直观的体现真实地表的情况,但是高分辨率也意味着更多的数据量,增加了精准分类及地物提取的难度。支持向量机(SVM)是核机器学习领
论文部分内容阅读
随着遥感技术的快速发展,能够获取的遥感影像在空间分辨率、光谱分辨率和时间分辨率上都有了明显的改进,这些先进的遥感技术为观测地区乃至全球的变化提供了大量的宏观和实时数据。其中,高空间分辨率的影像因其空间分辨率高,对地面物体的辨别能力强而受到研究者的青睐,虽然分辨率的提高可以更直观的体现真实地表的情况,但是高分辨率也意味着更多的数据量,增加了精准分类及地物提取的难度。支持向量机(SVM)是核机器学习领域的热门方法,经由结构风险最小化原则可以平衡分类机器的复杂度和样本学习能力,该算法可以避免“维数灾难”和“过学习”现象,在高分影像的分类中显现出极好的优势。本文分析了高分影像精准分类存在的难点,引入并优化了多尺度核支持向量机,同时使用智能优化算法进行参数优化,实现了高分辨率影像快速、准确的分类。主要的研究内容如下:1、通过对高分辨率影像特征及分类方法的分析研究,发现仅使用光谱特征用于分类会造成地物之间的混淆,而使用高分辨率影像提供的空间特征可以补全地物信息,提高分类的精度,因此将高分影像中地物的光谱、纹理特征同时用于分类机器的学习与构建;2、多核支持向量机是一种灵活性和效率更高的核机器,多核学习(MKL)的方法也有多种方式,经过理论和实验对比研究,多尺度核支持向量机相比较于合成核与组合核等多核学习方式具有更高的灵活性和可解释性;同时,经过对核函数的学习,改进了原先距离矩阵的构建方法,使用马氏距离代替原先的欧氏距离,构建了基于马氏距离的多尺度核支持向量机用于高分影像的分类,增强了核函数对于样本全局的学习能力。3、支持向量机的分类性能与核函数的参数选取相关,多核支持向量机的参数随核函数的增加而增加,选取难度也随之增加,智能优化算法为核参数的选取提供了更有效率的方式,使用改进后的动态差分进化算法确定参数,实现了高精度、高效率的影像分类。
其他文献
在长距离管道输水过程中,管道内液气两相流动是一种常见的现象,探明这一现象对管道的防护至关重要,而探明这一现象的关键在于描述管道中由于两相相互作用、压降和传热传质效应而形成的两相流动模式。然而,由于管道具有复杂的几何形状,导致两相流在流型上发生显著的特征变化。本文重点研究具有透明管道的封闭流动回路中的骤膨区域对两相液气流动特性的影响。段塞流在骤膨管道中的动力学研究是本文的重点。实验测试分别考察了液流
核磁共振技术在石油勘探领域发挥着重要作用,它提供的地层信息的丰富性,远多于其他任何单项测井方法。核磁共振谱仪是核磁共振测井仪的基础,传统的核磁共振谱仪系统的体积比较大,而且重量重,只能安装在相对固定的实验环境中,很难满足即时现场检测的需求,因此小型化谱仪一直是核磁共振领域的研究热点之一[1]。本文的研究目的是在传统谱仪的基础上实现便携式和小型化,设计并完成了一整套小型化谱仪的硬件系统。测试结果表明
渗流驱动问题在工业采油上引起了人们广泛的关注,目前,全世界有几十个国家和地区的几百个地方都注意到了渗流驱动问题,我们知道当把水注入到油层后,水就会使油层中的石油产生驱动力,叫做渗流驱动问题。因此,这一问题受到了国际社会的广泛关注,许多国家都在积极开展渗流驱动问题的研究。渗流驱动问题的数学模型是由压力方程和浓度方程组成的。在本文中,我们研究了渗流驱动问题的质量守恒特征有限差分方法。首先我们介绍了常见
酯酶是一类既可催化酯键水解又可催化酯键合成的酶的总称。其催化酯键水解时,使酯键断裂,产物为醇和酸;催化酯键合成时,使酸的羧基和醇的羟基脱水缩合,产物为酯类及其他香味物质。酯酶广泛存在于动物、植物、微生物中,且微生物中细菌、真菌中的酯酶含量较为丰富,因此微生物发酵法生产酯酶是酯酶的主要来源。由于微生物种类多、繁殖快,具有比动植物更广的作用p H,作用温度以及底物专一性,便于工业生产等优点,故微生物发
超滤复性是蛋白质体外重折叠的方法之一,但是由于蛋白质在复性过程中容易发生聚集产生沉淀,造成严重的膜污染,再加之超滤复性工艺优化困难,所以,目前有关超滤在蛋白质复性方面的报道相对较少。针对超滤复性存在的上述问题,本论文开展了以下三个方面的研究工作,并取得了较为理想的实验结果。首先,本论文将用于蛋白质超滤分离工艺优化的“参数扫描超滤技术”引入蛋白质超滤复性过程,实现了溶菌酶超滤复性工艺参数的快速优化。
蛋白质广泛参与到生物体的各项生命活动中,但是新生肽链必须折叠成特定的结构才能发挥其功能,蛋白质的错误折叠是导致许多疾病的重要原因。在许多蛋白质折叠的过程中,分子伴侣常常发挥重要的作用。来源于大肠杆菌的伴侣素GroEL及其辅因子GroES,是一类非常关键的分子伴侣,许多研究已经证明分子伴侣GroEL-GroES能够辅助多种水溶性蛋白的折叠。近期,本课题组的研究表明,分子伴侣GroEL-GroES也能
微藻由于生长周期短、油脂含量高及不占用农业耕地等特点被视为新型生物柴油的首选原料之一。为了解决微藻油脂积累和生物量生产之间的矛盾,本论文以小球藻(Chlorella vulgaris)为研究对象,首先利用低温等离子技术进行诱变,筛选生长速率快、油脂含量高的优良藻株,然后采用藻菌共培养技术,研究藻菌共培养对小球藻生长及油脂积累的影响。同时利用Illumina Mi Seq高通量测序技术,对微藻养殖水
威兰胶是一种微生物胞外多糖,由于具有不同于其他微生物多糖的独特的理化特性,近些年来被广泛应用于石油、食品、混凝土加工等行业。本文以Sphingomonas sp.WG基因组测序和预测的威兰胶合成途径为基础,以在威兰胶四糖重复单元组装过程中负责添加第二糖UDP葡萄糖醛酸的糖基转移酶WelK以及对威兰胶的合成和代谢具有调节作用的杂合双组分调节蛋白WelA为研究对象,通过基因敲除、过表达等方式研究了两者
氧化镨纳米棒(Pr6O11 NR)作为稀土材料之一,具有优异的光学、电学、磁性和催化性等特性,被广泛的应用于工业废气催化净化、光催化降解染料、甲烷催化燃烧反应、固态电解质燃料电池和储氢材料等方面。但是到目前为止,尚未发现其在生物学方面的应用。因此,为了弥补该领域的研究空缺,我们将研究重点集中在氧化镨纳米材料在生物检测方面的开发和拓展。核酸分子探针是近年来发展起来的具有广泛应用价值和发展潜力的生物分
G蛋白偶联受体(GPCR)是细胞表面最大的膜蛋白受体家族,其参与众多细胞内部及细胞之间的跨膜信号转导,具有重要生理功能,也是重要的药物靶点。虽然GPCR晶体结构的解析为我们理解GPCR结构与功能提供了重要信息,但对于GPCR激活过程的动态构象变化及选择性激活机制尚不清楚。针对该问题的研究将为深刻理解GPCR跨膜信号转导机制及选择性药物设计提供新的契机。人趋化因子受体CXCR4属于A族GPCR,在胚