弹道导弹尾焰扰动电离层建模及其对雷达回波的评估影响分析

来源 :国防科技大学 | 被引量 : 0次 | 上传用户:steven146
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
弹道导弹运载火箭的燃烧产物逸出喷口后(即尾焰)会与电离层中的物质发生相互作用,对背景电离层产生扰动。弹道导弹运载火箭的尾焰中包含多种高温高密度的中性气体成分(如H2O),它们会致使电离层中电子密度等多种参量的剧烈衰减,甚至产生人为空洞。利用这一特性,可以使用天波超视距雷达对其进行有针对性的监测,以达到提前预警的目的,大大提高防御系统的反应时间。通过数值模拟电磁波在电离层中的传播路径,进而研究雷达回波在其中的行进过程,以分析人为扰动对天波超视距雷达探测效能的影响。利用快速高精度的三维射线追踪对其路径进行数值模拟,分析不同频率电磁波及不同背景电离层参数对雷达工作的影响,可对天波雷达工作给予一定的理论指导。本文主要完成了以下工作:1、总结了弹道导弹推进剂的种类,梳理了化学能推进剂的发展,分析了三种不同的探测弹道导弹方式的机理并选择出最适用于已部署超视距雷达的方式;2、研究了固体推进剂的燃烧过程及燃烧的理论模型,分析了辐射亮温的机理并对尾焰的辐射亮温进行计算对比;3、建立了弹道导弹尾焰扰动电离层产生人工电离层空洞的模型,并设置不同初始值对其进行了模拟和对比分析;4、利用数值三维射线追踪算法,模拟计算了无线电波在人工电离层空洞中的行进过程以及可能发生的各种现象,进而研究电离层扰动对天波超视距雷达探测效能的影响。
其他文献
近年来,全球最大代码托管平台GitHub快速发展,这离不开大众群体的参与和贡献,这些行为背后是海量的开源数据,研究者利用这些开发行为数据对开发者进行贡献评估已经成为研究热点,通过对贡献者的评估,项目推荐、审阅者推荐、缺陷指派等推荐技术应运而生。因此,本文立足于GitHub开源社区,以协作开发为中心围绕开发者能力度量和为项目推荐开发者团队而不是单个开发者展开研究。主要工作与贡献总结如下:首先,提出了
未来高超声速飞行器的研制,要求进气道构型具有三维特性。在三维进气道中存在着横向压缩,一方面增加了压缩效率,另一方面,其与前体边界层相互作用,产生复杂的涡系结构,影响进气道的性能。因此,对高超声速进气道中流向涡的研究,具有重要的理论价值和广泛的工程应用前景。在三维进气道中,流场中存在大量的低能流动区域,流动过程中具有较大的横向压力梯度,这种压力梯度将低能流动区域的气流汇聚、卷起,形成了隔离段中的流向
多无人机协同跟踪多目标是多无人机系统的重要任务之一,其较单机跟踪方式具有更高的跟踪定位精度和更强的鲁棒性,在军用和民用领域都有广泛的应用。本文针对多无人机协同跟踪多目标任务过程中的关键问题开展研究,重点研究了基于目标聚类的多无人机跟踪策略以及有无环境信息的目标状态融合估计方法等。主要研究工作及创新点如下:(1)系统分析了多无人机协同跟踪多目标的系统架构、应用场景以及任务流程,设计了一种分层递阶分布
本文以运载火箭新型刚性包带连接装置为研究对象,系统研究了刚性包带在升温安装与降温预紧过程中的热力联合作用问题、轴向承载过程中的结构静力学问题和刚性包带分离-捕获过程中的动态响应问题,较全面分析了安装位移、结构刚度和接触面摩擦等关键因素对结构相关静动力学特性的影响规律,并对刚性包带连接装置进行了截面结构参数优化。主要研究内容如下:1)针对刚性包带装置的升温安装过程,开展了此过程中的热力学特性分析。基
随着超精密加工技术的发展,超精密机床主轴回转精度越来越高,传统车削、磨削方法由于受机床精度和检测方法的影响,难以满足加工精度要求。手工研磨的方法目前仍是高精度轴类零件加工的主要方法,限制了高精度轴系加工的发展。论文将光学确定性修形的思想应用到轴系零件高精度加工中,用砂带研抛工具在传统车削、磨削加工基础上进一步提高轴系零件的加工精度,突破机床加工的精度限制,解决轴类零件数字化修形的难题,对精密、超精
燃料的喷注混合过程是超燃冲压发动机中一切物理过程的初始阶段。能否实现高效的燃料混合是实现稳定燃烧需要解决的关键问题之一。燃料的喷注混合过程受到很多因素的影响,对不同因素影响作用的分析有利于对喷注方案进行优化。本文主要针对喷注马赫数、喷注角度和喷孔边界层厚度这三个因素对喷注混合过程的影响进行研究。受到喷孔外的压力限制,穿透深度并不会随着喷注马赫数的增大而单调增大。喷孔外的压力近似等于超声速来流经过一
超轻多孔夹芯结构兼具高比刚度、大比强度、强韧耐撞等优良力学特性,在航空航天、交通运输、国防工业等诸多领域具有广阔应用前景。然而,这类新型结构质量轻、阻尼小,容易产生及传递低频振动与噪声,对其开展低频减振降噪设计具有重要的工程应用价值和理论研究意义。声学超材料具有低频带隙特性,能够抑制特定低频范围(低频带隙)的弹性波传播,这为结构振动与噪声控制提供了全新思路。本文将声学超材料概念引入到超轻多孔夹芯结
超声速冷却气膜技术(Supersonic Film Cooling,SSFC)常用于对成像制导飞行器的光学窗口进行主动热防护。然而超声速冷却气膜流场结构复杂,喷流与主流相互作用形成激波、膨胀波、混合层等流场结构,使光学窗口附近流场密度分布不均匀,成像时光线穿过该时空不均匀的密度场后发生随机折射,使目标成像发生偏移、模糊、抖动以及能量衰减,严重影响光学成像质量和制导精度。本文对超声速冷却气膜流场开展
石墨烯是一种具有狄拉克锥能带结构的零带隙二维材料。金作为一种经典金属,费米能级位于sp带内,同样表现为无带隙性质。因此石墨烯和金不能有效实现光子发射。虽然它们能够通过热载流子复合产生光子,但通常效率很低。这是因为这两种材料的非平衡载流子弛豫时间比辐射寿命快得多。从理论上讲,有两种方法可以增强石墨烯和金属纳米结构中的超快光致发光:一种方法是降低非平衡载流子的弛豫速率,另一种方法是增加辐射效率。在本文
翼伞以其质量轻、体积小及操作可控的优势成为精确空投的研究热点,通过一定的导航、制导与控制可使其精确着陆。但与普通飞行器不同的是,翼伞系统气动特性复杂,难以建立较为精确的模型,同时其飞行环境具有很大的复杂性和不确定性,在飞行过程中容易受风场干扰偏离目标点。本文针对翼伞系统高精度动力学建模、融合动力学的风场预测及归航轨迹设计与优化、飞行过程的不确定性等问题展开研究,内容包括:(1)进行翼伞气动特性分析