【摘 要】
:
全球变暖问题的加重使CO2捕集成为人们迫切需要解决的问题。膜分离技术作为一类节能型气体分离技术以其能耗低、成本低、效率高、占地面积小等优点脱颖而出,成为目前的研究热点。混合基质膜(MMMs)是基于无机材料/聚合物制备而成的一种膜材料,兼具聚合物膜易于改性以及无机膜稳定性好的优点,同时又克服了渗透率和选择性不能同时提高的问题,受到了科研人员的广泛关注。但是,由于两相相容性较差,MMMs容易出现颗粒团
论文部分内容阅读
全球变暖问题的加重使CO2捕集成为人们迫切需要解决的问题。膜分离技术作为一类节能型气体分离技术以其能耗低、成本低、效率高、占地面积小等优点脱颖而出,成为目前的研究热点。混合基质膜(MMMs)是基于无机材料/聚合物制备而成的一种膜材料,兼具聚合物膜易于改性以及无机膜稳定性好的优点,同时又克服了渗透率和选择性不能同时提高的问题,受到了科研人员的广泛关注。但是,由于两相相容性较差,MMMs容易出现颗粒团聚、链段僵化、膜内存在缺陷结构等问题。为了改善界面缺陷,提高膜材料的分离性能,需对其进行改性处理。为了解决CO2捕集问题,本文制备了几种混合基质膜,并研究其气体分离性能,得到了分离能力较好的膜材料。本文选用含咪唑结构的6FDA型聚酰亚胺(6FDA-BI)为连续相,ZIF-8为分散相,制备用于CO2/CH4、H2/CH4、CO2/N2分离的混合基质膜。尽管这类MMMs具有不错的气体分离性能,但膜内仍存在界面缺陷等问题,所以用Zn2+改性方法对MMMs进行处理,进一步改善其气体分离能力。同时,还探究了聚合物类型对膜材料气体分离性能的影响。选择了两种不同类型的聚合物6FDA-6Fp DA和Pebax分别与Ni2(dobdc)混合制备MMMs,比较二者分离性能的差异。(1)成功制备出了具有较好的稳定性和机械性能及优异气体分离性能的6FDA-BI/ZIF-8 MMMs。随着MOFs掺杂量增加,MMMs气体渗透率不断提高,选择性略有降低。用Zn2+对6FDA-BI/20%ZIF-8改性处理,由于Zn2+与咪唑结构中的C-N发生配位,形成了Zn-N络合物,使ZIF-8与聚合物之间的相互作用力增强,从而改善了膜的气体分离性能。改性后的MMMs具有优异的CO2/CH4和H2/CH4理想选择性,同时气体渗透率也得到提高。(2)将Ni2(dobdc)分别与玻璃态的6FDA-6Fp DA和橡胶态的Pebax聚合物混合制备MMMs。气体分离性能测试结果表明,6FDA-6Fp DA膜和Pebax膜的气体渗透性相差较大。两种膜内均出现了MOFs团聚现象,而Pebax链段活动能力较强,故Pebax/10%Ni2(dobdc)性能受团聚影响变化相对较小。这说明聚合物性质的不同导致MMMs的气体分离能力也有较大差异,而颗粒团聚等缺陷不利于膜材料分离性能的提高,因此膜的制备过程中应避免此类情况的发生。
其他文献
有机物和重金属通过多种途径进入环境中会导致水体污染问题,其对人体健康和生态环境安全构成严重威胁,目前已经成为全球性的环境问题。因此,建立操作简单、灵敏、快速的检测方法具有非常重要的现实意义。磁性固相萃取(MSPE)技术具有分离快速、富集效率高、有机试剂用量少、绿色环保等优点,然而,未经修饰的四氧化三铁(Fe3O4)和纳米零价铁易于团聚和氧化且表面官能团较少,限制了其应用范围。因此,对其进行修饰改性
PAHs是一类持久性有机污染物,主要来源于各种燃烧过程的大气排放,在大气中广泛存在。大气干湿沉降是其主要去除方式。为探究昌平区大气PAHs干湿沉降特征及沉降机制,本文于2019年1月至11月在昌平城区分别采集大气干、湿沉降样品,采用正交试验建立水溶态PAHs提取方法,采用气相色谱/质谱联用仪(GC/MS)对样品中16种优控PAHs进行测定,分析PAHs干湿沉降通量、化学组成及环数分布,并运用相关分
磺化聚醚醚酮具有强度高,选择渗透性好的特点,有望成为大规模使用的非氟质子交换膜材料。但高质子电导率带来的强度降低等问题限制了其商业化应用。一般认为,改性之后的纤维有助于在质子交换膜内形成连续的质子传输通道,能够同时提高质子交换膜电导率和力学强度。聚丙烯腈纤维强度高,易制备等特点,将聚丙烯腈纤维水解改性,使其表面具能与亲水性的羧基,能提高其与磺化聚醚醚酮的界面结合能力。通过改性使聚丙烯腈纤维表面带氨
鄂东地区是我国煤层气勘探开发的重点区块,该区块采出水具有矿化度高且部分地区COD、氨氮浓度高的特点。采出水直接排放会引起环境污染等问题,因此,必须进行稳定处理并实现达标排放。本研究针对鄂东区块煤层气采出水水质特点,选择使用曝气生物滤池法处理,开展室内实验与现场试验。最终,优选出一种与水质匹配的高效菌种合剂,并用Illumina Mi Seq高通量测序技术分析装置内菌群结构及微生物多样性。本文主要研
权威数据显示二氧化碳(CO2)的排放量逐年上升,其造成的温室效应所带来的影响不言而喻。多证据表明单纯依靠植物的光合作用而在全球范围内大量消耗CO2远远达不到目的。联合国号召各个国家进行能源改革,努力将全球温度升高控制在1.5℃范围之内,以保障全球生态系统的正常循环。而我国作为CO2排放的第一大国,既要担起减少排放量的责任,又要面临着经济增长的压力,故将CO2有效捕获并通过优势的电化学方法将其转化为
伴随原油开采、运输等过程中产生大量含油污泥,若未得到妥善处理而直接排放,其内复杂化学成分将对环境造成特大破坏,并威胁动、植物及人类的健康。本文针对这一问题开发出新型油泥处理技术:注二氧化碳水洗法。本法将CO2萃取技术与热水清洗技术相结合,在中温、低压条件下实现油、泥分离。此技术未加入任何化学试剂,所用CO2与水均可循环使用,打破操作条件苛刻的限制,为含油污泥处理工艺发展指引环保新方向。本文的主要研
在煤燃烧气化过程中,煤中氯化物会发生化学转化生成HCl,其释放到粗煤气中后,不仅会严重腐蚀气化炉,还会危害下游设备及催化剂。论文以新疆广汇新能源股份有限公司气化炉为研究对象,对高氯煤燃烧气化过程中氯化物转移及转化规律开展研究,并开发适用于高氯煤的专用固氯剂,以缓解工业气化炉的氯腐蚀。利用高温燃烧水解法测定了新疆四个产区煤样的氯含量。疆纳产区煤样氯含量为3052.42μg/g,白石湖一、二、三采区煤
废塑料裂解油是一种由垃圾废塑料经高温催化裂解制得的液体燃料。废塑料油化技术的出现不仅有助于遏制废塑料垃圾对生态环境的污染,还有利于实现非再生性资源的循环化利用。但由于原料的来源中难以避免地存在含氯高聚物PVC,容易导致裂解得到的油品中氯含量的严重超标,对后续加工利用产生不利影响。因此,开展针对废塑料裂解油中氯化物的净化脱除研究具有重要的实用价值。本文首先对废塑料裂解油的基本性质进行了测试,发现除含
CO2是代表性温室气体,用化学吸收法对CO2捕集是降低碳排放的重要手段。醇胺溶液因具有碱性,能与CO2反应,产物加热又能分解,广泛用于CO2捕集。因其吸收能力随碱性增强而增强,但浓度及产物的稳定性会影响再生,所以单一的醇胺溶剂不能同时满足高吸收速率和低再生能耗的需求。由于叔胺能生成不稳定的HCO3-可降低再生能耗,而活化剂如PZ(哌嗪),由于空间位阻较小易于与CO2结合,可加速反应进行,其混合使用
油气田开采过程中产生的高浓度难降解废水的处理一直是业内的难题,近年来电催化氧化技术(ECOP)作为无药剂添加的高级氧化技术,已成为处理该类废水的研究热点之一。在ECOP中,以锡锑电极(Ti/SnO2-Sb)为代表的高效阳极材料可以产生强氧化性羟基自由基,能较彻底氧化分解有机污染物,但是电极寿命低的问题限制了锡锑电极的应用与发展。本文从基底微观改变和脉冲电沉积工艺两个方面进行优化改性,并考察其对两种