论文部分内容阅读
稀土元素因其独特的电子层结构,具有优异的光、电、磁、热等特性,被广泛应用于超导、航空航天、电子产品、化学传感器、催化等多种领域。随着稀土资源的开发和利用,发展绿色的稀土分离、富集技术备受关注。本文以二甘醇酸为原料,合成酰胺荚醚类N,N-二辛基二甘酰胺酸(DODGA)功能配体。以核-壳型Fe3O4@SiO2、层析硅胶及色谱性硅胶为支撑材料,通过酰基化反应制备了 3种改性固相萃取材料。采用SEM、TEM、BET、FTIR、TG、XPS等方法表征其形貌特征及配体键合量。采用等温吸附及吸附动力学实验对其吸附过程进行探究。并将三种固相萃取材料分别应用于稀土元素的富集、柱层析分离及色谱分析研究,主要研究结论如下:(1)设计合成酰胺荚醚类DODGA配体并通过液-液萃取实验研究DODGA对16种稀土离子的萃取性能。采用核磁、质谱、红外对DODGA进行结构确认。考察无机酸种类、配体浓度、萃取温度、干扰离子等因素对DODGA萃取性能的影响。结果表明,在1mol·L-1 HNO3溶液中,DODGA显示出最佳萃取性能,对16种稀土离子萃取率均在90%以上。改变萃取剂的浓度测定分配比的变化,计算得出La、Ce、Pr、Nd与DODGA的络合数为2,其它12种稀土元素络合数为3。改变KNO3的浓度,测定分配比的变化,计算得La、Ce、Pr、Nd与硝酸根离子络合数为1,其它12种稀土元素与硝酸根络合数为2。基于密度泛函理论,计算DODGA与稀土离子的结合能,结果表明,DODGA可优先与稀土元素形成配合物,实现选择性萃取。(2)以超顺磁性四氧化三铁颗粒为支撑材料,制备磁性介孔颗粒Fe3O4@mSiO2-DODGA 并应用于稀土元素的富集。Fe3O4@mSiO2-DODGA 具有均一的球形形貌,表层为介孔结构,DODGA成功修饰至颗粒表面,键合量为 367 μmol·g-1。HNO3 浓度为 2 mol L-1 时,Fe3O4@mSiO2-DODGA 对 16种稀土元素吸附率最大。以0.01 mol L-1 EDTA为洗脱液,16稀土元素可被完全解吸附。在浓度为2 mol·L-1HNO3溶液中,Fe3O4@mSiO2-DODGA颗粒稳定性良好,重复使用5次后,仍保持其初始吸附能力的88.25~92.63%,可循环使用。Fe3O4@mSiO2-DODGA颗粒具有良好的抗共存离子干扰能力,可在复杂样品中选择性吸附稀土元素。吸附动力学数据拟合与准二级模型一致,吸附等温线数据符合Langmuir等温线模型,表明Fe3O4@mSiO2-DODGA颗粒对稀土元素的吸附过程为均匀表面上的单层吸附,吸附过程由化学吸附控制,同时伴有物理扩散。(3)选用层析硅胶作为固相支撑材料,制备固相萃取材料SG@DODGA,填充层析柱,应用于16种稀土元素层析分离,可实现La、Ce、Pr、Nd的基线分离。结果表明,SG@DODGA中配体键合量约为322μmol·g-1。吸附动力学表明,SG@DODGA可以在100 min内实现对16种稀土元素的充分吸附,吸附量可达126.33 mg·g-1。SG@DODGA对16种稀土元素的吸附动力学符合准二级动力学模型,吸附等温线拟合符合Freundlich等温线模型,吸附过程为非均质表面的单层化学吸附。吸附热力学数据表明SG@DODGA对16种稀土元素的△G°为负值,△H°、△S°值为正值,吸附过程是吸热,自发,熵值增加过程,温度升高有利于吸附过程的进行。以SG@DODGA为填料,对16种稀土元素进行层析分离,获得各稀土元素的穿透曲线,层析柱对各稀土元素柱容量差异不明显。采用分段洗涤法,可实现16种稀土元素的初级分离,通过柱长增加实现了 La、Ce、Pr、Nd四种元素的基线分离。(4)以色谱硅胶HP@Amino为固相支撑材料,制备硅胶颗粒HP@DODGA,填充高效液相色谱柱并建立对15种稀土元素的分析方法。HP@DODGA材料中,DODGA配体键合量为219μmol·g-1,可在90 min内实现对稀土元素的充分吸附,吸附量为106.12 mg·g-1。HP@DODGA对16种稀土元素的吸附动力学数据符合准二级动力学模型,吸附等温线数符合Langmuir等温线模型,吸附过程为均质表面的单层化学吸附。采用HP@DODGA硅胶颗粒填充高效液相色谱柱(id 4.6mm ×25 mm,10μm),以偶氮胂Ⅲ为柱后衍生剂,搭建液相色谱分离系统。优化偶氮胂Ⅲ显色条件,考察50~150 mmol·L-1浓度2-羟基异丁酸(HIBA)水溶液-甲醇体系梯度洗脱条件。以80mmol·L-1 HIBA-甲醇为流动相梯度洗脱,实现15种稀土元素的基线分离,建立对15种稀土元素的液相色谱分析方法。在10~250 mg·L-1范围,线性相关系数大于0.9,回收率在85.7%~96.7%之间,并应用于实际矿产样品中稀土元素的定量分析,与ICP-MS检测结果一致。