论文部分内容阅读
胃粘膜肿瘤细胞图像(简称肿瘤细胞图像)属于一种医学图像也是自然图像,一方面,肿瘤细胞之间具有较大的复杂性和差异性并且组织器官的形状不是规则的;另一方面,肿瘤细胞图像数据具有高阶统计的特性,使其服从非高斯分布,这样就导致肿瘤细胞图像存在大量的冗余信息。因此常用的一些分类方法像支持向量机、贝叶斯等,在分类非线性、高维性的胃粘膜肿瘤细胞图像时,分类效果并不理想。由于量子神经网络具有很强的模式概括和泛化能力,在图像分类识别上具有优势,将其应用于经过基于正态逆高斯分布(normal inverse gaussian distribution,NIG)的非负稀疏编码(non-negative sparse coding,NNSC)神经网络提取肿瘤细胞的特征图像上,构建了一种基于量子神经网络的肿瘤细胞图像分类器,分类效果有所提高。基本研究思想如下:首先,量子神经网络是量子计算理论和人工神经网络的结合,使其具有很强的并行处理能力,在学习能力、记忆容量、有效性、回忆速度、信息处理速度和消除灾变性失忆能力等方面具有较强的优势。量子自组织特征映射神经网络(quantum self-organizing feature mapping neural network,QSOFM)具有量子计算的优点也有人工神经网络的优点,这些特点使其在医学图像的分类识别中具有天然的优势,本文就是利用QSOFM的优势和特点构建了基于QSOFM的肿瘤细胞图像分类器用于分类识别。其次,因为肿瘤细胞图像的复杂性、高维性和含有大量冗余信息等特点,把其直接作为QSOFM肿瘤细胞图像分类器的输入会导致分类器运行速度很慢和分类效果不理想。所以需要寻找一种降维方法来解决这个问题,在常用的数据降维方法中,主成分分析(Principal Component Analysis,PCA)具有理论完善和最优线性重构误差等特点,可以有效的提取图像的特征信息。因此,把PCA应用到肿瘤细胞图像的降维中。经过降维操作就得到了一个低维度包含图像有效信息的数据作为QSOFM的输入。最后,为了进一步提取肿瘤细胞图像的特征信息达到提高图像分类器的识别率,利用基于NIG的NNSC神经网络对肿瘤细胞图像进行特征提取来得到特征图像,把包含了图像本质信息的特征图像作为基于QSOFM的肿瘤细胞图像分类器的输入,比输入原始图像有更高的效率和更好的效果。所以本文融合基于NIG的NNSC的神经网络构建一个基于NIG的NNSC和QSOFM的肿瘤细胞图像分类模型。该模型是一个两层神经网络模型,第一层用于特征提取,第二层用于分类识别,实验证明,分类效果和速率均有所提高。