论文部分内容阅读
行波管是一种高增益的宽带微波/毫米波功率放大器件,广泛用于数据通信、电子对抗、预警飞机、火控雷达、精密制导,在现代军事电子装备中显示出不可取代的重要作用。行波管的研制涉及到电子光学、磁学、阴极电子学、微波电子学、电磁场理论、材料学、机械与热分析诸多学科,工艺过程十分复杂。计算机技术的发展与应用,极大地促进了行波管技术的进步。同时,提高行波管的设计能力,缩短开发周期,减少整管硬件实验,改善行波管性能,固化已有经验,也愈来愈离不开电子计算机,CAD已经成为研制行波管的主要手段。现代电子战、超宽频带高功率相控阵雷达、强力干扰机、微波能武器等的快速发展对高功率微波源提出了更高的要求。宽频带高功率器件成为主要研究对象。由于宽频带和高功率不可克服的矛盾,采用大功率连续波宽带行波管作为阵列单元末级放大器,通过功率合成技术成为获得宽频带高功率微波源的主要手段。在功率合成技术中,幅相一致行波管是核心器件。由于非常高的技术指标要求,使幅相一致行波管的研制和生产都面临很多的困难。其中成品率低是国内幅相一致行波管研制中面临的最严峻问题。成品率低导致无法进行有效的批生产,从而进一步使行波管的一致性难以得到保证。经过广泛的论证,相关领域专家普遍认为CAD技术成为研制幅相一致行波管的主要手段。在实际制管之前,经过高强度的计算机模拟能有效提高设计能力。论文首先系统、全面地综述了微波管CAD技术的最新进展、存在的问题和今后的发展方向。讨论了微波管CAD技术中常用的数值计算方法、介绍了有代表性的大型电磁分析软件、微波管各部件CAD软件、微波管CAD集成环境,对美国的MMACE项目和我国的TWTCAD项目进行了详细的描述。综述了幅相一致行波管国内外发展状况,讨论了目前我国在幅相一致行波管研制和生产中遇到的技术难点及对策。这一章为整个课题的开展指明了方向,奠定了基础。第二章从行波管高频电路出发,详细分析了影响幅相一致行波管色散特性和耦合阻抗的主要因素;开发了可视化计算软件,分析了各重要因素(如夹持杆宽度、螺距、金属翼片高度、螺旋线平均半径、夹持杆介电常数等)对色散特性和耦合阻抗影响的大小;证实了夹持杆材料特性是最重要的影响因素。第三章系统地介绍了粒子模拟方法(PIC);发展了考虑谐波互作用的行波管全三维大信号非线性理论,该理论考虑了周期永磁聚焦和均匀聚焦系统,能有效地退化为基于等效线路模型的Rowe一维、二维、三维非线性理论。基于粒子模拟方法,对三维空间电荷力的计算采用全三维塑性宏粒子模型。对于工作电压考<WP=9>虑了电位下沉效应。第四章探讨了面向对象软件工程方法学在大型科学研究型软件开发中的应用;基于改进的行波管三维非线性理论模型,结合面向对象软件工程方法学、可视化科学计算方法,采用Microsoft Visual C++6.0开发了能动态实时显示行波管内部工作状态和动态显示各技术指标参数的可视化科学计算软件。第五章介绍了幅相一致行波管的一般应用领域;基于改进的行波管三维非线性理论,结合TCP/IP网络并行计算方法、面向对象软件工程方法学、可视化科学计算方法,采用Microsoft Visual C++6.0开发了一个用于分析行波管幅相一致特性的网络计算平台;该平台是一个开放式的框架,经过扩充将来还可以用于研究其他类型微波管(如速调管、耦合腔行波管等)的注波互作用、幅相一致特性分析。