论文部分内容阅读
光学诊疗是利用光学手段来实现疾病诊断和治疗,具备高分辨、高灵敏、精确操控和易诊疗一体化等优点,正成为重大疾病早期诊断和精准治疗的重要手段。而开发高性能诊疗剂的关键在于如何权衡有效载荷、载体与表面修饰之间的利弊设计出个性化智能响应的纳米诊疗平台。例如,选择优秀的载体为有效载荷提供在运输过程中的保护、提高循环时间以及能够对肿瘤特异性响应。载体的表面修饰进一步为诊疗纳米材料提供额外的性能,例如,穿透障碍能力强,特异性结合靶点强等。所以纳米材料是发展光学诊疗技术在生物医学方面应用的关键环节。众所周知,无机材料具有优异的光物理性质,如高稳定性、高量子效率等,使其成为优秀的光学成像平台。高分子半导体通常为具有大共轭主链的共轭高分子或含有大共轭结构的高分子。因其优异的半导体光学性质,在光学诊疗方面潜力巨大。近年来,有机/无机杂化的纳米诊疗平台逐渐成为人们研究的热点。目前基于有机/无机杂化的纳米诊疗平台结合了有机与无机材料的优势,然而研究仍然存在一些问题和不足。在设计方面,如何巧妙的设计平台的结构来权衡纳米在运输、递送、靶向、渗透和毒性各方面的关系。本文旨在通过结构设计,开发基于共轭聚合物的具有近红外吸收的有机/无机杂化纳米诊疗平台。具体内容如下:1、基于共轭聚合物合成p H敏感的串联激活光动力治疗和化学疗法纳米诊疗平台的研究本章中我们使用基于半导体聚电解质的两性离子光敏剂(PFNS)来修饰上转换纳米颗粒的表面以制备近红外(NIR)光响应光动力治疗剂(UCNP@PFNS)。接下来将p H敏感的锰-磷酸钙(Mn Ca P)层进一步涂覆到UCNP@PFNS上,其中掺入缺氧激活的前药AQ4N。所获得的纳米复合材料在血液中具有73 nm的高稳定性直径,并且在肿瘤中具有显着增强的渗透性和保留(EPR)效应。重要的是,当这些纳米颗粒到达肿瘤部位时,酸性肿瘤微环境(p H6.5-6.8)会分解Mn Ca P层,并释放出UCNP@PFNS(30 nm)和AQ4N。相对粒径较小的UCNP@PFNS和AQ4N满足了纳米PS和药物在肿瘤中的不同分布要求,达到了很高的治疗效果,抑制率高达83%。此外,在Ca P分解过程中可释放Mn2+离子,导致肿瘤部位的磁共振(MR)信号显着增加。总体而言,我们报道了由MRI和荧光成像引导的纳米颗粒具有PDT和化疗的串联活性激活模式,这有望用于未来的临床诊断和治疗。2、共轭聚电解质刷为模板合成金纳米粒子在光声成像引导光热疗法设计用于有效地将近红外光转换为热的金纳米颗粒(GNP),为临床前的光声成像(PAI)指导光热诊疗学提供了广阔的前景;然而,低的光热转化效率(η)极大地限制了它们在与光热有关的光热学上的实际应用。因此,迫切需要设计新的方法和机理研究来提高转换效率。在本章中,报道了共轭聚电解质刷作为模板的方法可合成在体内为PAI和PTT的诊疗GNP材料,并且具有增强η的效果,同时解释了增强η的潜在机理。首先,通过使用单分散共轭聚电解质刷(PFNBr)作为模板,制备不同尺寸(30、45、60和75 nm)的聚合物模板GNP(PTG)。值得注意的是,30 nm PTG显示出最强的光热效应,相对于使用传统方法制备的相同大小的纯GNP,其显示的η增强了3.5倍。使用飞秒瞬态吸收(fs-TA)光谱进行的进一步机理研究表明,PTG加速了电子-声子相互作用,相对于纯GNP而言PTG的η增强了3.5倍。最后,使用最佳大小的PTG进行的体内研究表明,活体小鼠对肿瘤具有出色的抑制作用。这项研究不仅介绍了第一个共轭聚合物模板的PTG,而且还提供了对超快激发态动力学的更深刻的基本理解,这两者都将激发高性能PTG的未来制造。3、聚赖氨酸包裹的黑色素纳米颗粒靶向糖胺聚糖用于骨关节炎关节软骨退变的早期诊断本章中我们介绍聚赖氨酸(PLL)包裹的内源性黑色素纳米颗粒MNPs作为带正电荷的对比剂,通过其与软骨中阴离子糖胺聚糖(GAGs)的强静电相互作用,实现对软骨退变的准确光声成像(PA)。PLL-MNPs具有较高的PA强度、光稳定性和生物相容性。体外PAI研究显示,Zeta电位为+32.5±9.3 m V的PLL-MNPs比阴离子MNPs有更多的软骨吸收和更长的保留时间,并且与软骨中GAG含量呈正相关。在活小鼠模型中,经关节内注射给药后,PLL-MNPs在正常关节(高GAG含量)中表现出的PA信号约为OA(低GAG含量)的两倍。此外,所获得的PAI结果提供了OA膝关节中GAG含量分布的准确信息。因此,通过PAI检测分析OA软骨中GAG含量的变化,可以明确区分早期OA与晚期OA,监测药物治疗后OA的治疗效果,所有PAI结果均进行组织学检查。