论文部分内容阅读
凸函数是一类重要的函数,它在理论数学和应用数学中都有着广泛的应用.自60年代中期产生凸分析以来,凸函数的进一步推广就一直被众多学者所关注.近年来,广义凸函数及其应用成为该领域研究的一个热点.本文主要研究了s-对数预不变凸函数和Hilbert空间中的几类广义算子凸函数.首先,在第三章中,进一步推广了预不变凸函数,定义了s-对数预不变凸函数,并建立了一个关于n次可微函数的等式.利用这个等式和s-对数预不变凸函数的性质,得到了一些新的积分不等式,并研究了其误差估计问题.其次,在第四章中,在Hilbert空间中定义了算子s-预不变凸函数,并给出了相应的例子和函数是Hilbert空间中算子s-预不变凸函数的充要条件.然后建立了算子s-预不变凸函数的Hermite-Hadamard型积分不等式,并给出了不等式两边的估计.最后建立了两个算子s-预不变凸函数乘积的Hermite-Hadamard型不等式.在第五章中,将m-凸函数和(α,m)-凸函数推广到Hilbert空间中,定义了算子m-凸函数和算子(α,m)-凸函数,并给出了具体的例子,证明了它们的一些性质.同时也建立了算子m-凸函数和算子(α,m)-凸函数的Hermite-Hadamard型不等式.最后,在第六章中,将平面矩形域中的协同凸函数推广到Hilbert空间中,定义了协同算子凸函数,指出每一个算子凸函数都是协同算子凸函数,但反之不成立,并给出了反例.特别地也给出了函数是Hilbert空间中协同算子凸函数的充要条件.最后建立了协同算子凸函数的Hermite-Hadamard型积分不等式.